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FIG. 1: (a) Straight gauge link. (b) Staple-shaped gauge link as in SIDIS and DY.

FIG. 2: Illustration of the leading contribution to SIDIS in factorized form.

an idealized, e↵ective, resummed description of the gluon exchanges between the ejected quark and the remainder of
the nucleon in the evolving final state, see, e.g., Ref. [37] for a review. The gauge link roughly follows the direction
of the ejected quark, in SIDIS by convention denoted by the light-cone n direction. The TMD correlator obtained
from the squared amplitude thus has parallel Wilson lines attached to each of the quark field operators at 0 and b,
extending out to infinity along a direction v ⇡ n, see Fig. 1b. Due to the fact that the gauge link is only an e↵ective
representation of final state interactions within a framework of suitable approximations, there is a certain degree of
freedom with respect to its geometry, in particular with regard to the choice of its direction v. At tree level, the most
convenient choice is an exactly light-like gauge link, v = n. However, going beyond tree-level, it has been found that
the light-like link introduces so-called rapidity divergences that are hard to remove, see Ref. [38] for a review. One
way of regulating these divergences is to use a gauge link slightly o↵ the light cone [27], see Refs. [4, 6, 7] for the
application to SIDIS. In Ref. [4], the direction v is chosen time-like. More recent work in Refs. [6, 7] is based on
space-like Wilson lines, motivated by the insight that TMDs with this choice of link directions feature a “modified
universality”, i.e., they are predicted to be numerically equal for both SIDIS and DY [15] up to the expected sign
changes of T-odd TMDs. The space-like choice of Wilson lines also opens up the possibility of implementing the gauge
link directly in lattice QCD.

In Fig. 1b, the two parallel Wilson lines are connected at the far end by another straight Wilson line. The complete
gauge link thus has a staple-like shape. Bridging the transverse gap is necessary to render the operator gauge invariant
and proves to be essential if the light-cone gauge n ·A = 0 is used [39, 40]. In a covariant gauge, the connecting link
at infinity can be omitted; this has been exploited in Refs. [4, 6]. Lattice calculations are typically performed without
any gauge fixing. We therefore prefer the notation with an explicitly gauge invariant operator. Moreover, in our study
we take the limit of an infinite “staple extent” ⌘ explicitly. The gauge link employed in this work thus reads

U [C(⌘v)
b ] = U [0, ⌘v, ⌘v + b, b] , (14)

where v is space-like. Even at finite ⌘, this gauge link geometry fulfills the desired symmetry transformation rules,
as listed in Eq. (C6) of Ref. [13] and discussed further below. Here, we will be mostly concerned with the lowest
x-moment of TMDs, corresponding to the case b� = b+ = 0. In this case, the connection at the far end is purely
transverse.
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(y, z)

FIG. 1. Illustration of the pion matrix element, see Eq.(2).
The two external pion states are shown as grey ovals. The
non-local quark current is shown in red, made up of a quark-
antiquark pair (the red points) connected by a staple-shaped
gauge link C. The matrix element is calculated on the lattice
using the sequential source method. The sequential source is
constructed using propagators S1 and S3. For the proton an
additional direct propagator from source to sink is needed.

where |h(P, S)i is a single-hadron state with momentum
P and spin S. � is a Dirac matrix and f indicates the fla-
vor of the quark-field. The staple-shaped Wilson link U

is of length L stretching in the direction vµ = (0, ±1, 0, 0)

and of width ~b pointing in a transverse spatial direction.
Note that the quark-antiquark pair connected by the Wil-
son link is positioned in the same imaginary time slice.
The o↵set distance of the quark-antiquark pair along v
is denoted by `. The structure of the matrix element is
visualized in the sketch in Fig. 1.

At large L and hadron momentum, the matrix element
(2) can be factorized [21–23, 28, 29]. The structure of the
factorization theorem crucially depends on �. In partic-
ular, for � = {�0, 6 v, ...} (the complete set can be found
in Ref. [30]) one has the so-called leading power (LP)
expression

W [�]
f/h

(x; b; P ; µ) =
⇣2|x|(P+)2

⇣

⌘K(b,µ)/2

⇥ CH(xP+, µ)�[�]
f/h

(x, b; µ, ⇣) + O(�2),

(3)

where P+ = (EP + Px)/
p

2, Pµ = (EP , Px, 0, 0), and �
is the physical TMDPDF and CH is the coe�cient func-
tion. The coe�cient functions CH are known at next-to-
leading order (NLO) in the QCD coupling constant [21–
23]. The variable x is the momentum fraction, Fourier-
conjugate to `Px. The correction term O(�2) contains
various power-suppressed terms

O(�2) = O

⇣ M2

(xP+)2
,

1

(bP+)2
,

b

L
,

1

ML

⌘
, (4)

with M being the mass of the hadron.
The left hand side of Eq. (3) is independent of the

parameter ⇣. Thus, the ratio of quasi-TMDPDFs at
the same parameters except for momenta eliminates the

hadronic component of the factorization theorem,

R[�](x, b, µ; P1, P2) =
W [�]

f/h
(x, b; P1, S; µ)

W [�]
f/h

(x, b; P2, S; µ)

=

✓
P+

1

P+
2

◆K(b,µ)
CH(xP+

1 , µ)

CH(xP+
2 , µ)

+ O(�2). (5)

Inverting this relation one determines the CS-kernel.
One should note that for this way to proceed, a Fourier

transformation of the quasi-TMDPDF from coordinate
space (`Px) to momentum-fraction space (x) is required.
Such a transformation has to be supplemented by model
assumptions concerning the tail of the quasi-TMDPDF
[27], which introduces additional systematic uncertainty.
A procedure which avoids this complication was proposed
in Ref. [23]. It is suggested to analyse the ratio of the
first Mellin moments (` = 0) of two quasi-TMDPDFs. In
this case, the ratio can be written as

R[�](P1, P2; b) =

✓
P+

1

P+
2

◆K(b,µ)

r[�](b, µ; P1, P2), (6)

where r is [23]

r[�](b, µ; P1, P2) = 1 + 4CF

↵s(µ)

4⇡
ln

✓
P+

1

P+
2

◆

⇥

h
1 � ln

✓
2P+

1 P+
2

µ2

◆
� 2M[�](b, µ)

i
.

(7)

The function M contains the residual terms of the per-
turbative expansion, and depends on the quantum num-
bers of the quasi-TMDPDF. A key argument underlying
this method is that the function M[�](b, µ) is almost in-
dependent of b. This assumption is based on the weak
correlation of b and x dependencies of TMDPDFs, which
has been verified by fitting experimental data with the
unpolarized TMDPDFs for the proton and pion [6, 7].
The value of M can be found by comparing Eq. (7) and
its value in perturbation theory at b ⇠ 1 GeV�1 and
µ0 = 2 GeV (where both perturbation theory and the
factorization theorem are valid). For extended details see
Ref. [25]. The method is much simpler in comparison to
Eq. (5) but cannot be improved beyond NLO.

The description of the cases � = {1, �5, ...} requires
the next-to-leading power (NLP) factorization theorem
[30]. The NLP factorization has a much more involved
form and expresses a single quasi-TMDPDF via a sum of
various physical TMDPDFs, and also new lattice-related
nonperturbative functions  21(b) and  12(b) [30]. The
complicated structure of NLP factorization makes it less
practical. However, for particular combinations of �
and polarization, the NLP factorization simplifies to the
form of Eq. (3) (with a di↵erent coe�cient function). In
these cases, one can use the method Eq. (6) to determine
the CS-kernel (note, however, that considering the ratios

HadStruc: SDF for pion 
arXiv:2204.00543, 
arXiv:2001.04960….
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FIG. 2: Generalized Boer-Mulders shift for u-quarks as a function of staple extent ⌘|v|, for fixed ⇣̂ = 1.01; the panels illustrate
data obtained at a succession of quark separations |bT |. Plateau fits and extraction of asymptotic values (open symbols) are
described in the main text.

IV. NUMERICAL RESULTS

A. SIDIS and DY limits

The first step in the analysis of the obtained data concerns the behavior as a function of staple length ⌘. For
ease of notation, both positive and negative ⌘ are considered for a fixed v · P > 0 to distinguish staples oriented
in the forward and backward directions with respect to the pion momentum. Of particular physical interest is the
asymptotic behavior for ⌘ ! ±1, corresponding to the SIDIS and DY limits. Fig. 2 displays results for the u-quark
generalized Boer-Mulders shift as a function of ⌘|v| at a fixed ⇣̂ = 1.01, with each of the four panels corresponding to
a successively larger transverse quark separation |bT |. The T-odd behavior of the observable is evident. As the SIDIS
and DY limits are approached, a clear plateau behavior in ⌘|v| is observed up to moderate values of |bT |; as |bT | rises,
statistical uncertainties increase (as indicated by the jackknife error estimates in the plots), and the identification of
the plateaus becomes more tenuous, cf., e.g., the lower right panel, for |bT | = 0.48 fm. Plateau values are extracted
by averaging over the regions 7a  ⌘|v|  9a and �7a � ⌘|v| � �9a, respectively, as indicated by the fit lines in
the plots; finally, the SIDIS and DY limits are obtained imposing T-oddness, i.e., the two plateau values in each plot
are averaged with a relative minus sign to yield the asymptotic SIDIS and DY estimates also displayed in the panels
(open symbols). The asymptotic values slightly decrease in magnitude as |bT | rises.

Fig. 3 summarizes the results obtained in the SIDIS limit as a function of the quark separation |bT |, for three
di↵erent values of the Collins-Soper parameter ⇣̂. Note that the data at small |bT |, up to |bT | ⇡ 2a = 0.24 fm, may be
a↵ected by discretization artefacts, but at larger |bT |, the data are expected to well approximate the continuum limit.
For larger ⇣̂, cf. also further examples below, the statistical fluctuations rapidly increase, and no useful signal was
obtained beyond |bT | = 0.5 fm in the case ⇣̂ = 2.03. The data appear to approach well-defined limits as either |bT | or ⇣̂
becomes large. The behavior as a function of ⇣̂ will be discussed in greater detail below; the behavior as |bT | becomes
large seems plausible: Physically, once |bT | exceeds the size of the pion, the correlator (1) cannot anymore probe
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Boer-Mulders Effect

Emphasis on rigorous implementation, e.g. within LaMET approach 
LPC, arXiv:2211.02340; determination of Collins-Soper Kernel, e.g. Hsu 
et al, arXiv:2302.06502. 

HadStruc: current emphasis on GPDs within short-distance factorization, but method 
extendable to TMDs.  Pion: calculation of x-dependent Pion DAs (D. Kovner, GHP).


