NPS Science and Project Status

The experimental Program in Hall C at 12 GeV JLab... and beyond

Tanja Horn

THE CATHOLIC UNIVERSITY of AMERICA

Hall C Winter Collaboration Meeting

Jefferson Lab, 22-23 January 2018

Neutral Particle Spectrometer (NPS)

- NPS PbWO4
- □ The Neutral Particle Spectrometer (NPS) is envisioned as a facility in Hall C, utilizing the well-understood HMS and the SHMS infrastructure, to allow for precision (coincidence) cross section measurements of neutral particles (γ and π^0).

□ Global design of a neutral-particle spectrometer between 5.5 and 60 degrees consists of a highly segmented, crystal-based electromagnetic calorimeter preceded by a sweeping magnet

I. Albayrak, S. Ali, M. Amaryan, J. R.M. Annand, A. Asaturyan, V. Berdnikov, K-T. Brinkmann, M. Boer, A. Camsonne, M. Carmignotto, D. Day, V. Dormenev, D. Dutta, R. Ent, M. Guidal, D.J. Hamilton, <u>T. Horn</u>, C. Hyde, H. Mkrtchyan, G. Kalicy, D. Keller, C. Keppel, E. Kinney, A. Mkrtchyan, C. Munoz-Camacho, P. Nadel-Turonski, R. Novotny, R. Paremuzyan, I. Pegg, H. Rashad, J. Roche, O. Rondon, H. San, S. Sirca, I. Strakovsky, V. Tadevosyan, R. Trotta, A. Vargas, R. Wang, B. Wojtsekhowski, S. Wood, J. Zhang, C. Zorn

A.I. Alikhanyan National Science Laboratory/Armenia, Catholic Univ. of America, Vitreous State Laboratory, Institut de Physique Nucleaire d'Orsay/France, Univ. of Giessen/Germany, Univ. of New Hampshire, Univ. of Colorado, Mississippi State Univ., Jefferson Laboratory, Ohio University, Old Dominion Univ., Univ. of Glasgow/Scotland, Univ. Ljubljana/Slovenia, Akdeniz Univ./Turkey, Univ. of Virginia

More info in the NPS Wiki: https://wiki.jlab.org/cuawiki/index.php/Main_Page

□ 4 experiments fully approved by PAC to date

- O E12-13-007: Measurement of Semi-inclusive π^0 production as Validation of Factorization
- O E12-13-010 Exclusive Deeply Virtual Compton and π^0 Cross Section Measurements in Hall C
- O E12-14-003 Wide-angle Compton Scattering at 8 and 10 GeV Photon Energies
- O E12-14-005 Wide Angle Exclusive Photoproduction of π^0 Mesons
- □ 1 conditionally approved experiment
 - O C12-17-008 Polarization Observables in Wide Angle Compton Scattering
- Ideas exist for future experiments and new scientific directions taking advantage of the compatibility of NPS with Hall infrastructure
 - O Experiments with polarized targets
 - O High-Intensity Photon Source
 - O Exploring possibilities for correlation experiments
 - 1 Letter of Intent
 - O LOI12-15-007 Timelike Compton Scattering with transverse target

E12-13-007 - SIDIS basic (e,e' π) cross sections

Linked to framework of *Transverse Momentum Dependent Parton Distributions*

- Validation of factorization theorem needed for most future SIDIS experiments and their interpretation
- Need to constrain TMD evolution w. precision data
- Questions on target-mass corrections and ln(1-z) resummations require precision large-z data

Transverse momentum widths of quarks with different flavor (and polarization) can be different

E12-13-007 goal: Measure the basic SIDIS cross sections of π^{o} production off the proton, including a map of the P_T dependence (P_T ~ Λ < 0.5 GeV), to validate^(*) flavor decomposition and the k_T dependence of (unpolarized) up and down quarks

(*) Can only be done using spectrometer setup capable of %-type measurements (an essential ingredient of the global SIDIS program!)

 $P_{T} = p_{t} + z k_{t} + O(k_{t}^{2}/Q^{2})$

Requires new ~25 msr Neutral-Particle Spectrometer

Advantages of (e,e' π°) beyond (e,e' $\pi^{+/-}$)

- Many experimental and theoretical advantages to validate understanding of SIDIS with neutral pions
- **Can verify:** $\sigma^{\pi^{0}}(x,z) = \frac{1}{2} (\sigma^{\pi^{+}}(x,z) + \sigma^{\pi^{-}}(x,z))$
- **Confirms understanding of flavor decomposition**/ k_T dependence

PAC: "the cross sections are such basic tests of the understanding of SIDIS at 11 GeV kinematics that they will play a critical role in establishing the entire SIDIS program of studying the partonic structure of the nucleon."

E12-13-010: precision DVCS cross sections

Simplest process: $e + p \rightarrow e' + p + \gamma$ (DVCS)

E12-13-010 DVCS measurements follow up on measurements in Hall A:

Hall A data for Compton form factor (over *limited* Q² range) agree with hard-scattering

Extracting the real part of CFFs from DVCS requires measuring the cross section at multiple beam energies (DVCS²–Interference separation)

E12-13-010: exclusive π^0 cross section

- □ Relative L/T contribution to π^0 cross section important in probing transversity
 - > If σ_T large: access to transversity GPDs
- □ Results from Hall A at 6 GeV Jlab suggest that the longitudinal cross section in π^0 production is non-zero up to Q²=2 GeV²
- $\hfill\square$ Need to understand Q²/t dependence for final conclusion on dominance of σ_T

E12-14-003: Wide Angle Compton Scattering

- Arguably the least understood of the fundamental reactions in the several-GeV regime
- Wide-Angle Compton Scattering cross section behavior was a foundation leading to the GPD formalism
 - Reaction mechanism intrinsically intertwined with basics of hard scattering process (handbag diagram), yet also sensitivity to transverse structure like high-Q² form factors

- Perhaps (6-GeV data) factorization valid for s, -t, -u > 2.5 GeV²
- 12-GeV data for

 -u > 2.5 and -t up to
 10, s up to ~ 20 GeV²

New Opportunities with NPS and a Compact Photon Source (CPS)

6-7 February 2017 High-Intensity Photon Sources Workshop (CUA)

https://www.jlab.org/conferences/HIPS2017/

Polarization observables Wide Angle Compton Scattering (K_{LL}, A_{LL}, K_{LS}, A_{LS,..)}

Hadron Spectroscopy with secondary K₁ beam

- Strange meson spectroscopy
- \circ $\,$ Connections to heavy ion physics
- Possibly link to doubly charged baryons?

Additional Science Topics under study

WACS exclusive photoproduction

Timelike Compton Scattering

□ Short Range Correlations

- Photoproduction of Few Body Systems
- Also: Missing mesons, Phi production,...

C12-17-008: Polarization Observables in Wide-Angle Compton Scattering

Kin	E _{Beam} [GeV]	E _{in} [GeV]	θ_{γ} [°]	E_{γ} [GeV]	D _{NPS} [m]	$\theta_{\mathbf{p}}$ [°]	$p_{ m p}$ [GeV/c]	D _{BB} [m]	θ^{cm} [°]
L1	8.8	6.0	21.5	4.16	3.0	35.5	2.62	1.5	70.0
S1	8.8	6.0	21.5	4.16	3.0	35.5	2.62	1.5	70.0
L2	11.0	9.5	17.4	6.49	3.0	30.5	3.82	1.5	70.0
L3	8.8	6.0	30.2	3.22	3.0	26.5	3.63	2.5	90.0
L4	8.8	6.0	42.3	2.25	1.0	19.4	4.55	3.5	110.0
S4	8.8	6.0	42.3	2.25	1.0	19.4	4.55	3.5	110.0

\rightarrow See talk by D. Day

- Explicit, model-independent test of factorization by measuring the s-dependence of the polarization observables at fixed centre of mass angle
- Measurement of A_{LL} at large angles allowed for tests of relevant degrees of freedom in hard exclusive reactions
- □ Also extract the Axial and Pauli form factors constrain GPDs \tilde{H} and E at high –t

NPS General Design Concept

- a ~25 msr neutral particle detector consisting of up to 1116 PbWO₄ crystals in a temperature-controlled frame including gain monitoring and curing systems
- HV distribution bases with built-in amplifiers for operation in a high-rate environment
- Essentially deadtime-less digitizing electronics to independently sample the entire pulse form for each crystal – JLab-developed Flash ADCs
- □ A new 0.3Tm sweeping magnet allowing for small-angle and large angle operation at 0.6 TM. The magnet is compatible with existing JLab power supplies.
- Cantelevered platforms off the SHMS carriage to allow for remote rotation (in the small angle range), and platforms to be on the SHMS carriage (in the large angle range) – new
 - A beam pipe with as large critical angle as possible to reduce beamline-associated backgrounds – further study showed only a small section needs modification (JLab/Hall C)

NSF MRI PHY-1530874

NPS Project Status

Four fully approved experiments, supported by NSF MRI PHY-1530874 (CUA, OU, ODU), international (IPN-Orsay, Glasgow, Yerevan), and JLab

Magnet: corrector and main coil construction complete, corrector coil is in test lab, yoke steel cutting nearly final, setting up space in test lab for assembly

NPS

 \rightarrow See talk by C. Hyde

PMT and HV bases: design drawings final, prototyping, procurements started \rightarrow See talk by F. Barbosa

□ Frame and integrated systems: concepts and initial design complete, detailed drawings to be presented this week

→ See talk by C. Munoz-Camacho

□ Crystals: 460 crystals procured from SICCAS, full crystal testing facilities at CUA and IPN-Orsay, chemical analysis and crystal growth in collaboration with the VSL, synergy with EIC crystal calorimeter R&D, cleanroom ready

\rightarrow See talk by V. Berdnikov

PbWO,

Frame and integrated systems

- a) Adding in the cooling, cabling, etc. ongoing now
- b) The cantelevered platform off SHMS 2018 project

c) 3D overview drawing with NPS magnet, detector etc, with the spectrometers. – can in principle be done anytime, but for real fabrication drawings need to wait until detector is near completion

NPS Sweeper Magnet

Yoke Steel – after Expect at Jlab by 9 Feb.

Expect all components at Jlab in next few weeks Next: Assembly and testing

Magnet Assembly Space and Crystal Clean Room - Ready

Crystal prototype and DAQ

Crystals and dimension measurements

Infrastructure for crystal testing - *completed*

IPN-Orsay (France) – M. Josselin, C. Munoz-Camacho, H. San, R. Wang

Cross check with subset of crystals previously tested at CUA, Giessen U. and Caltech

10

8 6 4

Setup

- □ Optical Transmittance (L/T)
 - PerkinElmer spectrophotometers (LambdaX50) and Varian Cary
 - Differences at small wavelengths may be due to misalignment – checks ongoing

Setup

10

12

14

16

Transmittance

- Crystal light yield and timing
 - Measurements nominal at 18°C and with 100ns integration gate
 - PMT quantum efficiency may account for differences
- Next: radiation hardness

20 22 LY at Giessen

Infrastructure for crystal testing - *completed*

CUA (USA) – S. Ali, V. Berdnikov, T. Horn, I. Pegg, R. Trotta, A. Vargas, VSL

- Optical Transmittance (L/T)
 - 86% of SICCAS 2017 crystal subset passes at 420nm, only 10% at 360nm
 - 5% of crystals passing specification have mechanical flaws that impact uniformity of light collection
- Crystal light yield and timing

55% (55/100) of SICCAS 2017 and ~50% (1/2) of Crytur crystals pass specs, discussion with vendors about role of mechanical flaws, roughness and chemical composition in (controlled) increasing LY

SICCAS 2017 crystals: Large variations in light yield, optical transmittance, and radiation resistance

Crystal Quality: *Surface Analysis*

Typical crystal surface quality

Measurements: scanning microscope in collaboration with VSL

- Scratches applied in a well-defined manner may benefit crystal properties discussion with vendors ongoing
- □ Looking deeper into defects: SICCAS 2017 crystals

Anticipate 450 crystals from CRYTUR for testing

Defects result in high, but non-uniform light yield – discussion with vendors about mitigation ongoing

A Neutral Particle Spectrometer together with polarized targets enables precision cross section measurements with neutral particles

4 (1) experiments fully (conditionally) approved, more ideas being explored...

Ongoing efforts of the NPS collaboration and Hall D to design and build a Compact Photon Source for additional science output in Hall A/C and Hall D