EIC User Group Meeting CUA, Washington DC, August 1, 2018

Flavor decomposition of collinear PDFs and FFs

Wally Melnitchouk

JLab Angular Momentum collaboration

Outline

 Unravel flavor (and spin) structure of hadrons by extracting parton distribution functions and fragmentation functions using global QCD analysis with Monte Carlo-based methods

Recent highlights:

- Constraints from Fermilab & JLab data on <u>unpolarized PDFs</u> at high x
- First extraction of pion PDFs from Drell-Yan and HERA leading neutron production data
- First combined analysis of <u>polarized</u> DIS + SIDIS + SIA data, with *simultaneous* extraction of PDFs & fragmentation functions
- First MC analysis of nucleon's <u>transversity</u> PDFs + lattice QCD

Global PDF analysis

- Universality of PDFs allows data from different processes (DIS, SIDIS, jet production, Drell-Yan ...) to be analyzed simultaneously
- Several dedicated global efforts to extract PDFs using factorization theorems + pQCD at a given order in α_s
 - → CTEQ, MRS/MMHT, HERAPDF, DSSV, ... use standard maximum likelihood methods (χ^2 minimization)
 - → NNPDF, JAM use <u>Monte Carlo</u> methods (neural networks, nested sampling)
- Typically PDF parametrizations are nonlinear functions of PDF parameters, e.g. $xf(x,\mu) = Nx^{\alpha}(1-x)^{\beta} P(x)$ where P is a polynomial, neural net, ...
 - \rightarrow multiple local minima present in the χ^2 function
 - \rightarrow thoroughly scan over sufficiently large parameter space

Bayesian approach to global analysis

Analysis of data requires estimating expectation values E and variances V of "observables" O (functions of PDFs) which are functions of parameters

$$E[\mathcal{O}] = \int d^{n} a \,\mathcal{P}(\vec{a}|\text{data}) \,\mathcal{O}(\vec{a})$$
$$V[\mathcal{O}] = \int d^{n} a \,\mathcal{P}(\vec{a}|\text{data}) \left[\mathcal{O}(\vec{a}) - E[\mathcal{O}]\right]^{2}$$

"Bayesian master formulas"

Using Bayes' theorem, probability distribution \mathcal{P} given by $\mathcal{P}(\vec{a}|\text{data}) = \frac{1}{Z} \mathcal{L}(\text{data}|\vec{a}) \pi(\vec{a})$

in terms of the likelihood function \mathcal{L}

Bayesian approach to global analysis

Likelihood function

$$\mathcal{L}(\text{data}|\vec{a}) = \exp\left(-\frac{1}{2}\chi^2(\vec{a})\right)$$

is a Gaussian form in the data, with χ^2 function

$$\chi^{2}(\vec{a}) = \sum_{i} \left(\frac{\text{data}_{i} - \text{theory}_{i}(\vec{a})}{\delta(\text{data})} \right)^{2}$$

with priors $\pi(\vec{a})$ and "evidence" Z

$$Z = \int d^n a \, \mathcal{L}(\text{data}|\vec{a}) \, \pi(\vec{a})$$

 \rightarrow Z tests if *e.g.* an *n*-parameter fit is statistically different from (*n*+1)-parameter fit

Bayesian approach to global analysis

- Standard method for evaluating E, V via maximum likelihood
 - \rightarrow maximize probability distribution

 $\mathcal{P}(\vec{a}|\text{data}) \rightarrow \vec{a}_0$

 \rightarrow if \mathcal{O} is linear in parameters, and if probability is symmetric in all parameters

 $E[\mathcal{O}(\vec{a})] = \mathcal{O}(\vec{a}_0), \quad V[\mathcal{O}(\vec{a})] \to \text{Hessian} \quad H_{ij} = \frac{1}{2}$

$$I_{ij} = \frac{1}{2} \frac{\partial \chi^2(\vec{a})}{\partial a_i \partial a_j} \Big|_{\vec{a} = \vec{a}_0}$$

- In practice, since in general $E[f(\vec{a})] \neq f(E[\vec{a}])$, maximum likelihood method often fails
 - \rightarrow need more robust (Monte Carlo) approach

$$E[\mathcal{O}] \approx \frac{1}{N} \sum_{k} \mathcal{O}(\vec{a}_{k}), \quad V[\mathcal{O}] \approx \frac{1}{N} \sum_{k} \left[\mathcal{O}(\vec{a}_{k}) - E[\mathcal{O}] \right]^{2}$$

Monte Carlo methods

First group to use MC for global PDF analysis was NNPDF, using neural network to parametrize P(x) in

Forte et al. (2002)

 $f(x) = N x^{\alpha} (1-x)^{\beta} P(x)$

— α, β are fitted "preprocessing coefficients"

Iterative Monte Carlo (IMC), developed by JAM Collaboration, variant of NNPDF, tailored to non-neutral net parametrizations

N. Sato et al. (2016)

• Nested sampling (NS) — computes integrals in Bayesian master formulas (for E, V, Z) explicitly Skilling (2004)

Unpolarized Nucleon PDFs

Unpolarized PDFs

• Ubiquity of proton F_2 data (SLAC, BCDMS, NMC, HERA, JLab, ...) provides strong constraints on *u*-quark PDF over large *x* range

- Absence of free-neutron data and smaller |e_q| of d quarks limit precision of d-quark PDF, especially at high x
 - nuclear effects in deuterium obscure free-neutron structure extracted from inclusive measurements

Unpolarized PDFs

- Valence *d/u* ratio at high x of particular interest
 - → testing ground for nucleon models in $x \rightarrow 1$ limit
 - $d/u \rightarrow 1/2$ SU(6) symmetry
 - $d/u \rightarrow 0$ $S = 0 \ qq$ dominance (color-hyperfine interaction)
 - $d/u \rightarrow 1/5$

 $S_z = 0$ qq dominance (perturbative gluon exchange)

• $d/u \to 0.18 - 0.28$

DSE with qq correlations

considerable uncertainty
at high x from deuterium
corrections (no free neutrons!)

Unpolarized PDFs

- Valence d/u ratio at high x of particular interest
 - → significant reduction of PDF errors with new
 JLab tagged neutron & FNAL W-asymmetry data

$$d + \bar{u} \to W^- \to \ell^- + \bar{\nu}$$

- → extrapolated ratio at x = 1 $d/u \rightarrow 0.09 \pm 0.03$ does not match any model...
- → upcoming experiments at JLab (MARATHON, BONUS, SoLID) will determine d/u up to $x \sim 0.85$

From perturbative QCD expect \approx symmetric $q\bar{q}$ sea generated by gluon radiation into $q\bar{q}$ pairs Ro

Ross, Sachrajda (1979)

- x dependence of $\overline{d} \overline{u}$ asymmetry established in FNAL E866 pp/pd Drell-Yan experiment
- A common explanation for flavor asymmetries in the nucleon $(\bar{d} - \bar{u}, s - \bar{s}, ...)$ is meson "cloud"

→ relatively successful phenomenology, but connection with QCD often unclear

Rigorous connection with QCD established via chiral EFT

$$\mathcal{L}_{\text{eff}} = \frac{g_A}{2f_\pi} \, \bar{\psi}_N \gamma^\mu \gamma_5 \, \vec{\tau} \cdot \partial_\mu \vec{\pi} \, \psi_N - \frac{1}{(2f_\pi)^2} \, \bar{\psi}_N \gamma^\mu \, \vec{\tau} \cdot (\vec{\pi} \times \partial_\mu \vec{\pi}) \, \psi_N + \dots$$

- At leading order, gives rainbow, Kroll-Ruderman (for gauge invariance), and tadpole diagrams
- Matching of quark-level and hadron-level operators with same symmetries

$$\mathcal{O}_q^{\mu_1\cdots\mu_n} = \sum_h c_{q/h}^{(n)} \ \mathcal{O}_h^{\mu_1\cdots\mu_n}$$

yields convolution
representation for PDFs

$$q(x) = \sum_{h} \int_{x}^{1} \frac{dy}{y} f_h(y) q_v^h(x/y)$$

More specifically, contributions to quark PDF from different diagrams can be organized as:

Ji, WM, Thomas (2015)

E866 $\bar{d} - \bar{u}$ data can be well described within chiral EFT framework

$$\bar{d} - \bar{u} = \left[f_{\pi}^{(\text{rbw})} + f_{\pi}^{(\text{bub})} \right] \otimes \bar{q}_{v}^{\pi}$$

Barry, Sato, WM, C.-R. Ji (2018)

→ depends also on pion PDF ... which can be fit simultaneously!

PDFs in the pion

Most information on pion PDFs has come from pion-nucleus Drell-Yan data (CERN, Fermilab)

 \rightarrow constrains valence PDFs at $x \gg 0$ (uncertainty from gluon resummation)

Hutauruk, Cloet, Thomas (2016)

→ pion sea quark & gluon PDFs at small x mostly unconstrained

PDFs in the pion

Recent new (Monte Carlo-based) global analysis used chiral effective field theory to include also leading neutron electroproduction from HERA

splitting function (computed from $\chi {\rm EFT})$

pion structure function

e

Barry, Sato, WM, C.-R. Ji (2018)

PDFs in the pion

Larger gluon fraction in the pion than without LN constraint

■ Tagged DIS experiment at JLab $(e n \rightarrow e' p X)$ will probe pion structure at intermediate x values (between DY and LN)

- extension to hyperon final state could probe kaon structure
 - → LN (p beam) and LP (d beam) at EIC!

Nucleon Helicity PDFs

Proton spin structure

- Question of how proton spin decomposed into its q & g constituents has engrossed community for > 30 years
 - \rightarrow stimulated advances in theory, experiment & analysis

- → inclusion of JLab data increases # data points by factor ~ 2
- → s-quark polarization *negative* from inclusive DIS data (assuming SU(3) symmetry)

Polarization of quark sea?

- Inclusive DIS data cannot distinguish between q and \overline{q}
 - \rightarrow semi-inclusive DIS sensitive to $\Delta q \& \Delta \bar{q}$

- \rightarrow but need fragmentation functions!
- Global analysis of DIS + SIDIS data gives different sign for strange quark polarization for different fragmentation functions!
 - $\rightarrow \Delta s > 0$ for "DSS" FFs de Florian et al. (2007)
 - $\Delta s < 0$ for "HKNS" FFs Hirai et al. (2007)
 - → need to understand origin of differences in fragmentation!

MC analysis of fragmentation functions

 $e^+e^- \to h X$ single-inclusive

annihilation (SIA)

Sato, Ethier, WM, Hirai, Kumano, Accardi (2016)

- \rightarrow favored FFs well constrained; unfavored not as well...
- \rightarrow nontrivial shape of $s \rightarrow K$ fragmentation
- \rightarrow hard $g \rightarrow K$ fragmentation? (robust feature!)

MC analysis of fragmentation functions Fragmentation functions from SIA and (polarized) SIDIS

Ethier, Sato, WM (2017)

- → some constraint from SIDIS on unfavored FFs $(e.g. \ s \rightarrow K^+)$, but uncertainties still large
- \rightarrow new result more consistent with DSS at moderate z

Simultaneous analysis

Simultaneous determination of spin PDFs and FFs, fitting to DIS, SIA and polarized SIDIS (HERMES, COMPASS) data

Ethier, Sato, WM (2017)

Simultaneous analysis

Polarized strangeness in previous, DIS-only analyses was negative at $x \sim 0.1$, induced by SU(3) and parametrization bias

→ weak sensitivity to ∆s⁺ from DIS data & evolution
— SU(3) pulls ∆s⁺ to generate moment ~ -0.1
— negative peak at x ~ 0.1 induced by fixing b ~ 6 - 8

 \rightarrow less negative $\Delta s = -0.03(10)$ gives larger total helicity $\Delta \Sigma = 0.36(9)$

Simultaneous analysis

- Simultaneous analysis of DIS (unpolarized + polarized), SIDIS (unpolarized + polarized), SIA under way
 - \rightarrow minimize uncertainty from unpolarized $s \& \bar{s}$ PDFs

Andres, Ethier, Sato, WM (2018)

 \rightarrow indication of $s - \bar{s}$ asymmetry from neutrino DIS data

$$S^{-} = \int_{0}^{1} dx \, x(s - \bar{s}) = (2.0 \pm 1.4) \times 10^{-3} \qquad \text{NuTeV} (2007)$$

 \rightarrow from chiral SU(3) loops

 $S^{-} = (0.4 - 1.1) \times 10^{-3}$

Salamu, C. Ji, WM, Thomas, Wang (2018)

Nucleon Transversity PDFs

Transversity distributions

• Extraction of transversity (TMD) PDF from SIDIS data + isovector moment $g_T = \int dx (h_1^u - h_1^d)$ from lattice QCD

Lin, WM, Prokudin, Sato, Shows (2018)

-> significantly reduced uncertainties with lattice constraint

Transversity distributions

Extraction of transversity (TMD) PDF from SIDIS data + isovector moment $g_T = \int dx (h_1^u - h_1^d)$ from lattice QCD

Lin, WM, Prokudin, Sato, Shows (2018)

- distributions do not look very Gaussian!
- \rightarrow MC analysis gives $g_T = 1.0 \pm 0.1$
- \rightarrow maximum likelihood analysis would have given $g_T \approx 0.5$

Outlook

- New paradigm in global analysis *simultaneous* determination of collinear distributions using MC sampling of parameter space
 - providing new & more reliable insights into quark/gluon structure of hadrons
- Short-term: "universal" QCD analysis of all observables sensitive to collinear (unpolarized & polarized) PDFs and FFs
- Longer-term: application to global analysis of transverse momentum dependent (TMD) distributions to map out full 3-d image of hadrons