Unpolarized TCS physics case

Why unpolarized TCS is needed?

- need basis of unpolarized cross section for global fits
- $\rightarrow~2$ independent observables: $\sigma_{_{unpol}}$ and circularly polarized $\Delta\sigma_{_{\odot U}}$
- universality studies on GPD H

 \rightarrow need of high precision for twist 3 accuracy on the measurement and comparison with DVCS \rightarrow need many independent observables from DVCS and TCS (polarized...) to bring constrain on correlations and beyond twist 2, LO formalism.

 \rightarrow Comes from both high precision unpolarized experiment and polarized measurements: unpolarized TCS is not enough (kinematic factors), DVCS is not enough (one limited process)

- Easier to measure than polarized target cross section (not a good argument)
- \rightarrow First step prior polarized experiment
- $\rightarrow\,$ need for systematics on similar experiment than polarized one
- New observables:

 \rightarrow with high precision: CT parity with θ asymmetry and comparison with DVCS charge asymmetries. Need to go to .1% accuracy at least on interference sensitivity

What can be better than Hall B and SoLID?

• Hall B:

- poor statistics and had to be extended to low Q'² region (>1/2 data on tape)
- \rightarrow OK for a first measurement, but global fits cannot be performed nor unbiased CFFs extraction
- Physics case based on misleading argument of extracting $\mathsf{Re}(\mathcal{H})$ to compare with DVCS charge
- \rightarrow it is wrong and TCS will do worse than DVCS in same conditions at extracting CFFs and Re(\mathcal{H})
- \rightarrow Unpolarized x-sec: Im + Re, more difficult to access Re, mostly from correlations
- $\ensuremath{\rightarrow}$ charge asymmetries in DVCS are not related to cosine projection of TCS

• SoLID:

- expected high statistics, should reach precision for global fits
- possibilities to study higher twist with bins in (t, $Q^{\prime 2}$) and NLO with bins in $Q^{\prime 2}$ cons:
- no real photon beam $\,\rightarrow\,$ angular corrections... make harder precision measurements
- large acceptance range: good, but loose on precision. Proton may not be detected: projections for both case with and without. First precision measurement better using dedicated setup

• What can be better:

- real photon + high precision, limited acceptance to focus all statistic at high intensity on few points
- possibility to enlarge e+e- angles to reach new kinematic regions with high enough statistics

 \Rightarrow high precision in ξ and lepton momenta on few selected points

• Similar apparatus than polarized TCS: not an argument for the PAC, but for systematics and interpretation of polarized results

Relation between TCS structure and DVCS charge asymmetries

 θ : refers to e-

⇒ C-odd integration over θ : flat integration ϕ : θ interference change sign

From Oleg Teryaev:

- TCS $\boldsymbol{\theta}$ similar to FB asymmetries at LHC

- relation between parity in θ distributions of TCS and switching DVCS lepton charge assuming "CT" equivalent

⇒ TCS+BH interference behavior in θ (next slide)

 \Rightarrow most accessible observable and precision needed?

Behavior of interference in $\boldsymbol{\theta}$

Comparison of above parity violating interference to DVCS charge asymmetries

- $\rightarrow\,$ universality studies: CPT conserved
- \rightarrow should enhance $\text{Re}(\mathcal{H})$ in global fits but need theory proof

To do: fitter code is allowing to extract CFFs from both ϕ and θ distributions, but at fixed ϕ and interpretation of uncertainties not yet proven using θ distributions as well

 \Rightarrow can be extracted from projections such as momenta of e+e-

⇒ the most important result that unpolarized
TCS can bring,
beyond global fits and universality studies

needs high precision in $\boldsymbol{\theta}$ and momentum

note: ϕ integrated x-sec is symmetric

Other important input for the physics case:

- quasi-model independent global fits and uncertainty interpretations \rightarrow work with Michel Guidal
- higher twist and universality studies $\ \ \ \rightarrow \ \$ work with Simonetta Liuti
- \Rightarrow both need high precision in ξ in particular for real CFFs and universality

Main modification needed to polarized setup

- Magnet for e+e-p
- LH2 target 10 cm
- Different angles for the calorimeters, other possibilities with 1 calorimeter only
- $\rightarrow\,$ phase space studies in progress, ideal setup is different angles than polarized TCS
- Photon: CPS or 10% radiator? \top depend on the statistics requirements and background

What needs to be done (physics):

- most relevant observables: $\sigma,$ $\Delta\sigma$ + " θ " from leptons \rightarrow under discussion
- most relevant kinematics \rightarrow likely lead to modification of the setup
- resolution on observables, exclusivity
- max accuracy on interference part and observable to access it
- global fits integrated over $\boldsymbol{\phi}$

conclusion: not straightforward physics case and likely to require setup modification