THE CATHOLIC UNIVERSITY of AMERICA





# The EEEMCAL prototype beam tests with Pair Spectrometer in HallD

Vladimir V. Berdnikov (CUA) for EEEmCal consortia

Jlab EIC meeting; August 20 2021

# **Yellow Report Calorimetry Requirements**

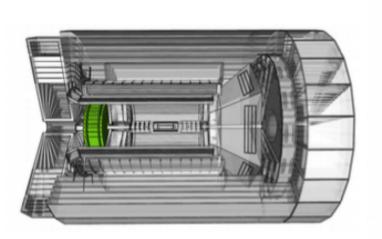
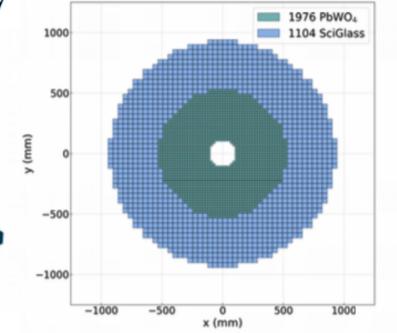

| n                        |              | Nomenclature           |                                                      | Tracking               |                                                                                              |                          |                                                                                                  | Electrons and Photons |                                  |                    | π/K/p PID                |            | HCAL           |                                                                                | Muons      |
|--------------------------|--------------|------------------------|------------------------------------------------------|------------------------|----------------------------------------------------------------------------------------------|--------------------------|--------------------------------------------------------------------------------------------------|-----------------------|----------------------------------|--------------------|--------------------------|------------|----------------|--------------------------------------------------------------------------------|------------|
| η                        | Nomenciature |                        |                                                      | Min p <sub>T</sub>     | Resolution                                                                                   | Allowed X/X <sub>0</sub> | Si-Vertex                                                                                        | Min<br>E              | Resolutio<br>n σ <sub>E</sub> /E | PID                | p-Range<br>(GeV/c)       | Separation | Min E          | $\begin{array}{c} \text{Resolution} \\ \sigma_{\text{E}}/\text{E} \end{array}$ | muons      |
| 6.9 — -5.8               |              |                        | low-Q <sup>2</sup> tagger                            |                        | δθ/θ < 1.5%; 10 <sup>-6</sup> < Q <sup>2</sup><br>< 10 <sup>-2</sup> GeV <sup>2</sup>        |                          |                                                                                                  |                       |                                  |                    |                          |            |                |                                                                                |            |
|                          | ⊥ p/A        | Auxiliary<br>Detectors |                                                      |                        |                                                                                              |                          |                                                                                                  |                       |                                  |                    |                          |            |                |                                                                                |            |
| 4.5 — -4.0<br>4.0 — -3.5 | ¢ pirk       |                        | Instrumentation to separate charged particles from y |                        |                                                                                              |                          |                                                                                                  |                       |                                  |                    |                          |            | 7              | ~50%/√E+6%                                                                     |            |
| 3.5 — -3.0               |              |                        |                                                      |                        | σ <sub>p</sub> /p ~ 0.1%×p+2.0%                                                              |                          |                                                                                                  | 1                     | 2%/√E+<br>(1-3)%                 |                    |                          |            | 1              |                                                                                |            |
| 3.0 — -2.5<br>2.5 — -2.0 |              |                        | Backwards<br>Detectors                               |                        | σ <sub>p</sub> /p ~ 0.1%×p+2.0%                                                              |                          | σ <sub>xy</sub> ~30μm/pт+<br>40μm                                                                | 7                     |                                  |                    | ≤ 7 GeV/c                |            |                | ~45%/√E+6%                                                                     |            |
| 2.01.5                   |              |                        |                                                      |                        | $\sigma_p/p \sim 0.05\% \times p+1.0\%$                                                      |                          | σ <sub>xy</sub> ~30μm/p <sub>T</sub> +<br>20μm                                                   |                       |                                  |                    |                          |            |                |                                                                                |            |
| 1.5 — -1.0               |              |                        |                                                      |                        |                                                                                              |                          |                                                                                                  |                       | 7%/√E+<br>(1-3)%                 | π<br>suppression   |                          |            |                |                                                                                |            |
| 1.0 — -0.5               |              |                        |                                                      |                        |                                                                                              |                          |                                                                                                  |                       |                                  | up to 1:104        |                          |            |                |                                                                                |            |
| 0.5 — 0.0                |              | Central<br>Detector    | Barrel                                               | 100 MeV π<br>135 MeV K | σ <sub>p</sub> /p ~ 0.05%×p+0.5%                                                             | ~5% or<br>less           | σ <sub>xyz</sub> ~ 20 μm<br>d <sub>0</sub> (z) ~ d <sub>0</sub> (rφ<br>~ 20/pτ GeV<br>μm + 5 μm  | 50<br>MeV             |                                  |                    |                          | $>3\sigma$ | ~500           | ~85%/√E+7%                                                                     | Use iul    |
| 0.0 — 0.5                |              |                        |                                                      |                        |                                                                                              |                          |                                                                                                  |                       |                                  | : 10 GeV/c         |                          | MeV        | 00 /0/ 12 / /0 | b (g,                                                                          |            |
| 0.5 — 1.0                |              |                        |                                                      |                        |                                                                                              |                          |                                                                                                  |                       |                                  |                    | : 15 GeV/c               | -          |                |                                                                                | resc lutio |
| 1.0 — 1.5                |              |                        |                                                      |                        |                                                                                              |                          |                                                                                                  |                       | (10-12)%/<br>√E+(1-3)%           |                    | 30 GeV/c                 |            |                |                                                                                |            |
| 1.5 - 2.0<br>2.0 - 2.5   |              |                        | Forward<br>Detectors                                 |                        | $\sigma_p/p \sim 0.05\% \times p+1.0\%$<br>$\sigma_p/p \sim 0.1\% \times p+2.0\%$            | -                        | σ <sub>xy</sub> ~30μm/pτ-<br>20μm<br>σ <sub>xy</sub> ~30μm/pτ+                                   |                       |                                  | 3 <del>о</del> е/л | ≦ 50 GeV/c               | -          |                | ~35%/√E                                                                        |            |
| 2.0 - 2.5<br>2.5 - 3.0   |              |                        |                                                      |                        |                                                                                              |                          |                                                                                                  |                       |                                  |                    |                          |            |                |                                                                                |            |
| 2.5 - 3.0<br>3.0 - 3.5   |              |                        |                                                      |                        |                                                                                              |                          | σ <sub>xy</sub> ~30μm/p <sub>T</sub> +<br>40μm<br>σ <sub>xy</sub> ~30μm/p <sub>T</sub> +<br>60μm |                       |                                  |                    | ≤ 30 GeV/c<br>≤ 45 GeV/c |            |                |                                                                                |            |
| 3.5 — 4.0                |              |                        | Instrumentation to                                   |                        |                                                                                              |                          | ουμm                                                                                             |                       |                                  |                    | - 10 001/0               |            |                |                                                                                |            |
| 4.0 — 4.5                |              |                        | separate charged<br>particles from γ                 |                        |                                                                                              |                          |                                                                                                  |                       | ECA                              |                    |                          |            | Ŧ              | ICAL                                                                           |            |
|                          | ↑e           | Auxiliary<br>Detectors |                                                      |                        |                                                                                              |                          |                                                                                                  |                       |                                  |                    |                          |            |                |                                                                                |            |
| > 6.2                    |              | Delectors              | Proton<br>Spectrometer                               |                        | σ <sub>intrinsic</sub> ( <b> t </b> )/ <b> t </b> < 1%;<br>Acceptance:<br>0.2< pτ <1.2 GeV/c |                          |                                                                                                  |                       |                                  |                    |                          |            |                |                                                                                |            |

Figure 8.126: Summary of the Physics Working Group detector requirements

# **EEEMCAL**

### **EEEMCAL** consortia institutions:


CUA, LehighU., MIT and MIT-Bates Research and Engineering Center, U. Kentucky, AANL, FIU, Charles U.-Prague, IJCLab-Orsay



| Overall Length | 60 cm                      |
|----------------|----------------------------|
| Bore           | 16 cm                      |
| Rodius         | 82 cm                      |
| Support Sides  | 17                         |
| Support Radius | 100 cm                     |
| Offset         | 199 cm in Lepton Direction |
| Total Volume   | 1.27 m <sup>3</sup>        |

- Geometry: • z=-195cm
- $R_in=11 \text{ cm} (\text{eta} \sim -3.5) = R_min_PWO$
- R\_max\_PWO=53 cm (eta ~2)=R\_min\_Glass
- R\_max\_total=100cm (eta ~ 1.4)=R\_max\_Glass

Modules **PWO 1976** (2x2x20 cm<sup>3</sup>) Modules **Glass 1104** (4x4x40 cm<sup>3</sup>) All PWO for this volume: ~7600 PWO modules Weight: 5-6 tons



**PWO:** compact, radiation hard, luminescence yield to achieve high energy resolution, including the lowest photon energies Sensor: SiPMs **SciGlass:** EIC eRD1 radiation hard, luminescence yield

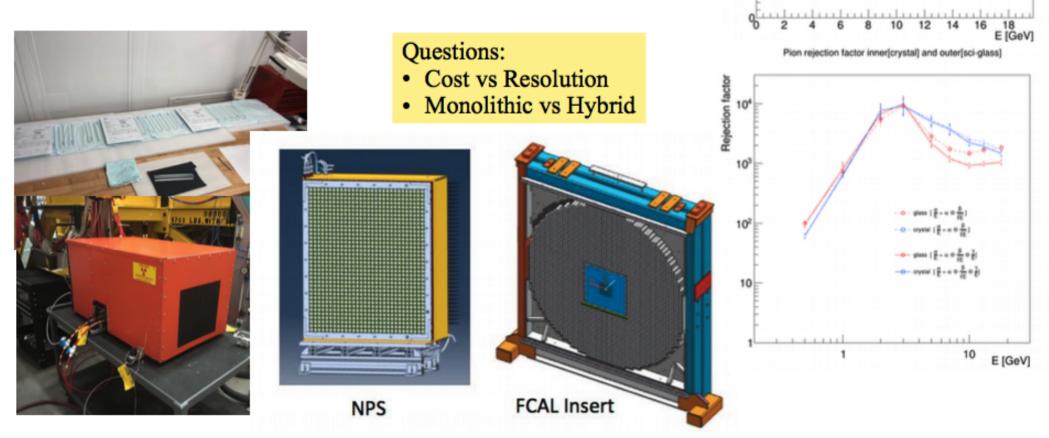
similar or better than crystals depending on longitudinal length Sensor: SiPMs

# **EEEMCAL**

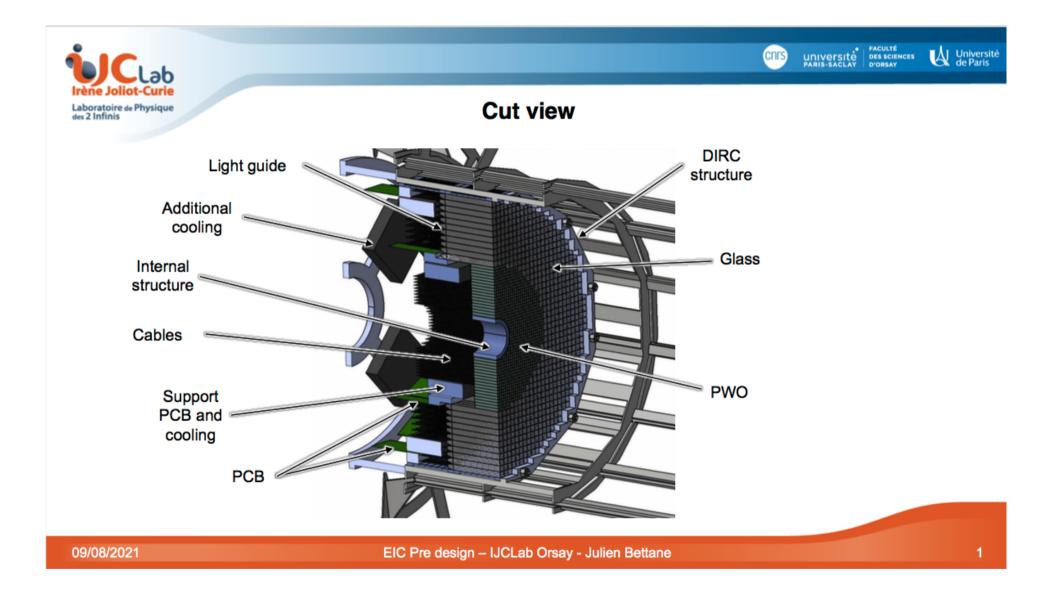
E resolution of inner[crystal] and outer[sci-glass]

= 1.52 @

[sci-glass]

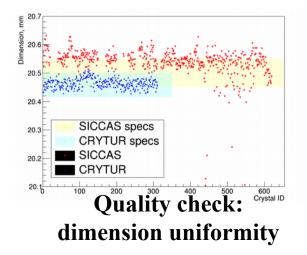

[crvstal]

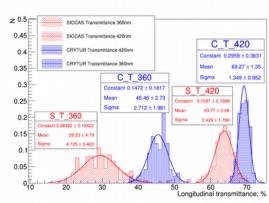
[%]


ъш

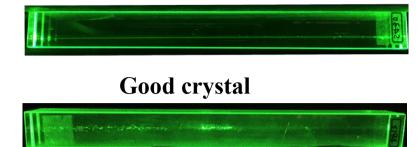
### EEEmCal consortia items of interest and ongoing activities:

- · Radiator: crystal/glass fabrication and characterization
- Frame design/construction to hold the crystal/glass bars
- Prototype construction/commissioning and beam tests
- Monte Carlo simulations and comparison with test beam results
- · Readout, electronics, detector cabling and infrastructure
- Slow controls and online software
- · Calibration and monitoring of performance



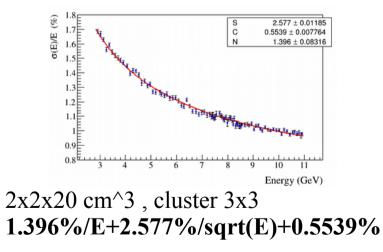


# **EEEMCAL mechanical predesign**




# **EEEMCAL PWO crystals**

- Much effort has gone into crystal evaluation over the last decade
- Benefits from synergies with other projects: Neutral Particle Spectrometer (NPS) and FCAL at JLab, PANDA
  - Resources, prototypes, software development
- Crystal dimensions 20.5x20.5x200 mm3
- Vendors exist, but only two vendors of PbWO4 crystals available worldwide
- Still some R&D related to raw crystal material powder
- SICCAS/China: failure rate ~30% of crystals produced in 2014-19 due to major mechanical defects
- CRYTUR/Czech Republic: Strict quality control procedures – so far 100% of crystals accepted






Longitudinal transmittance

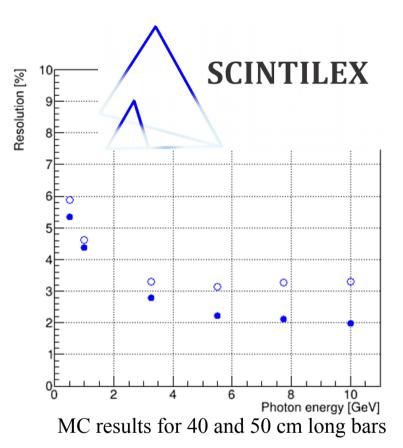


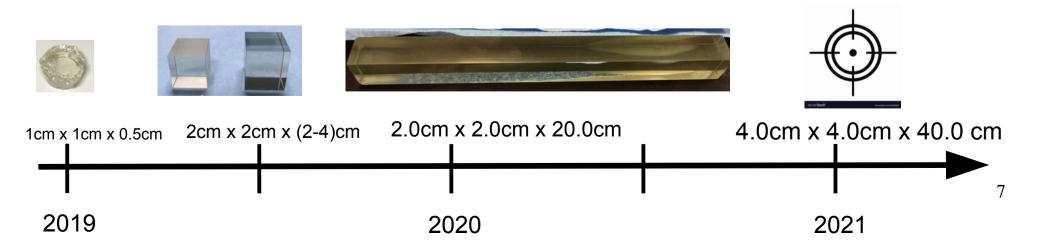
Bad crystal: bubbles in bulk, old labels ...

Electromagnetic calorimeters based on scintillating lead tungstate crystals for experiments at Jefferson Lab, 2021



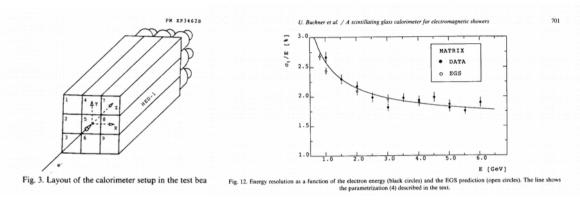
https://inspirehep.net/literature/1896934


# **EEEMCAL SciGlass**


- Ongoing EIC R&D program (eRD1)
- Simulation suggests a resolution comparable to PbWO4

$$\frac{\sigma_E}{E} = \frac{2.5\%}{\sqrt{E}} \oplus \frac{2.7\%}{E} \oplus 1.5\%$$

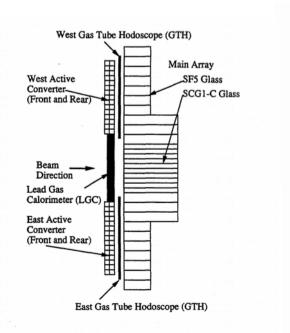
Assumes that 40cm long glass bars with these properties will be available for mass production


- Scintilex has developed the scale-up and can now fabricate 20cm and 40cm long glass bars optimization ongoing.
- Ongoing preparation for beam tests: bars need to be polished (flatness, rectangularity etc.), quality assurance, testing with gamma sources, cosmic



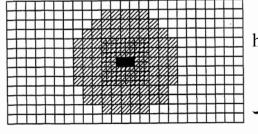


## **Scintillating Glass beam performance in the past**


#### Performance of a scintillating glass calorimeter for electromagnetic showers, 1988



8x8x66 cm<sup>3</sup> ER=1.46%/E+2.4%/sqrt(E)+1.63%


https://inspirehep.net/literature/261664

#### The Experiment 705 Electromagnetic Shower Calorimeter, 1993



|               | SCG1-C     | SF5        |  |  |  |
|---------------|------------|------------|--|--|--|
| Composition   | B=O 43.4%  | PbO 55%    |  |  |  |
| (by weight)   | SiO2 42.5% | SiO2 38%   |  |  |  |
|               | Li2O 4.0%  | K2O 5%     |  |  |  |
|               | MgO 33%    | Na2O 1%    |  |  |  |
|               | K2O 3.3%   |            |  |  |  |
|               | A12O3 2.0% |            |  |  |  |
|               | Ce2O3 1.5% |            |  |  |  |
| Density       | 3.36 g/cm3 | 4.08 g/cm3 |  |  |  |
| Radiation     |            |            |  |  |  |
| Length        | 4.25 cm    | 2.47 cm    |  |  |  |
| Absorption    |            |            |  |  |  |
| Length        | 45.6 cm    | 42.0 cm    |  |  |  |
| (30-200GeV/c2 |            |            |  |  |  |
| pions)        |            |            |  |  |  |

Table 1. Properties of SCG1-C Scintillating and SF5 Lead Glass



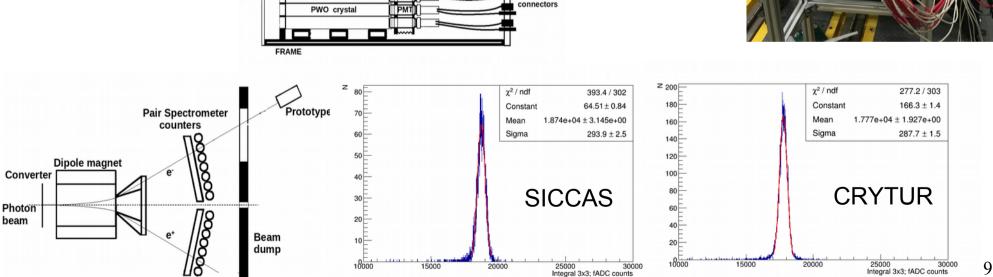
15.x15.x89 cm<sup>3</sup> 7.5x7.5x89 cm<sup>3</sup>

Rad. Length 20.9 X0

ER=0.99%+4.58%/sqrt(E)

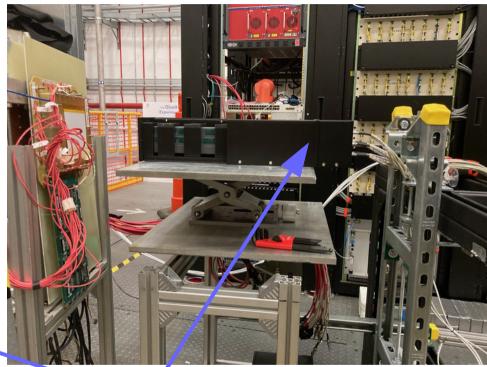
https://inspirehep.net/files/1299a6aa1e200e01f9d7f208800a81f6

# **Beam tests with Configuration #1 prototype**


**Goal of the tests:** PWO crystal quality check and vendor comparison for NPS, FCAL insert projects and eRD1 consortium

- Installed 3x3 prototype behind the PS with SICCAS or CRYTUR crystals
- Readout electronic chain optimized
- Energy resolution at 4.7 GeV is about 1.5 % for bypassed bases
- Light yield of SICCAS crystals is about 6 % larger than CRYTUR
  - True for selected SICCAS crystals, but large variation in SICCAS crystal properties while CRYTUR is very uniform

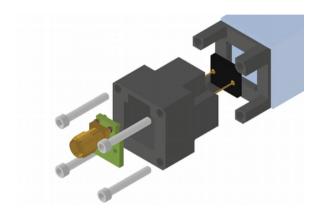
HV divide


• Details: Nucl.Instrum.Meth.A 956 (2020) 163375





# **Beam test preparations**

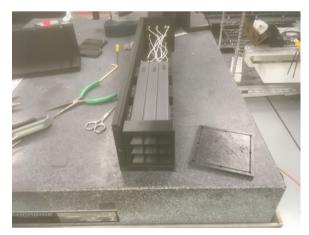




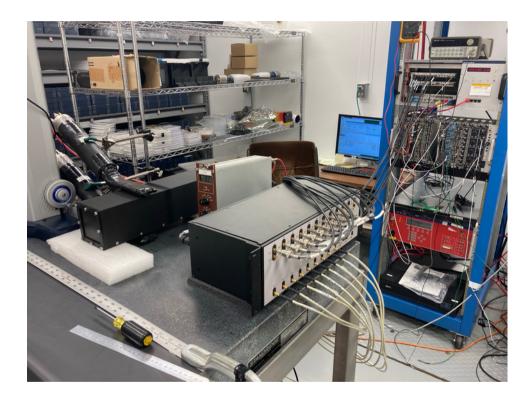

EEEMCAL prototype

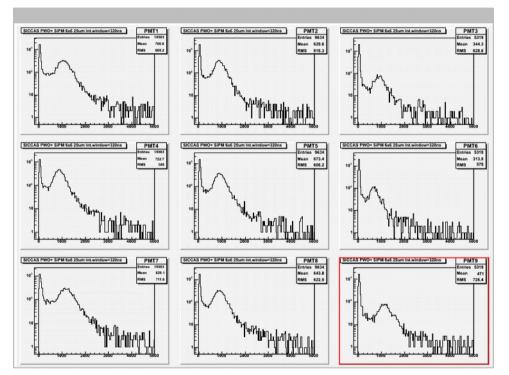
# **Configuration #2: SiPM based 3x3 PWO prototype**

Goal of the tests: Optimize and test SiPM readout chain with new generation PWO crystals




- Improved prototype with new SiPM based assembly
- Same size 3D printed frame as PMT based version
- Two piece SiPM holder concept developed
- Holders are 3D printed (PLA plastic)
- PEEK plastic will be used in real detector
- Silicon based glue for frame, no SiPM glueing to crystal
- SiPM soldered to circuit board with SMA connector
- 25um cell SiPM for beam tests installed (75um second option)
- LEMO output at the detector patch panel (BIAS/Preamp or Waveboard application)

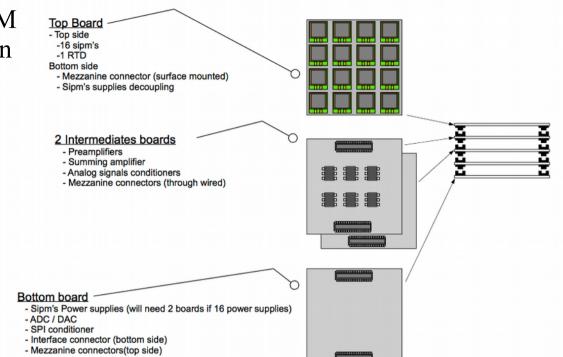


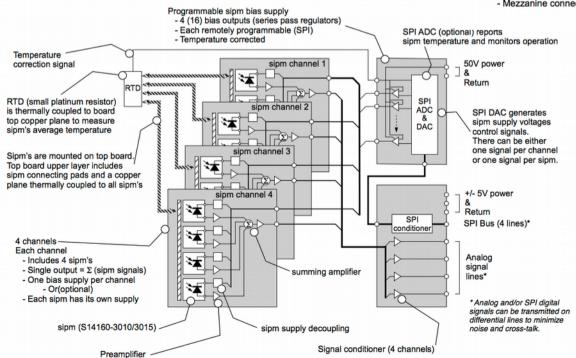








# **Configuration #2: SiPM based 3x3 PWO prototype**




# **Configuration #3: SiPM matrix based 3x3 CRYTUR PWO prototype**

**Goal of the tests:** Optimize and test SiPM matrix readout chain with new generation PWO crystals

- CRYTUR USA concept
- 9 CRYTUR crystals
- 16 SiPMs per crystal
- 3x3 mm<sup>2</sup> SiPMs
- ~90k cells per SiPM
- Plug-n-play prototype
- First working RO version for EIC





- Expect delivery: October 2021
- Direct performance comparison with 3x3 PMT version, INFN SiPM version
- Energy resolution studies
- Noise studies
- Light collection studies
- Linearity studies
- Threshold studies

# <u>Outlook</u>

- The method for calorimetry tests behind PS in hallD established with series of successful measurements since 2018
- Beam performance comparison between CRYTUR PWO crystals produced from powder purchased from old and new vendor
- Different electronics readout chains PMT's and SiPM's, preparations ongoing
- Readout using SiPM matrix, development ongoing
- Trigger and trigger-less (SRO) DAQ options
- New generation Scintilex SciGlass measurements with the beam
- Expecting ~ 10 new different configurations during 2021 run including PWO crystals and new generation SciGlass bars, different photosensor readout and DAQ options