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Inclusive: Deep Inelastic Scattering Exclusive: Elastic Scattering

t
fig. from 
M. Vanderhaeghen

pdf
FFs

Toward 3D nucleon imaging

Form factors F
1
(t), F

2
(t), G

A
(t), G

p
(t)  

→ FT transverse of charge densities
quarks transverse distribution thanks to "t" 
dependence

Local operator: quark created/annihilated at 
same space-time points, off forward: t≠0

Structure functions f(x), g(x)
 ⇒ Parton Distributions q(x), g(x)

x dependence : partons longitudinal momentum 
fraction of the nucleon, 
infinite momentum frame: all "forward" boost

Q² : scale, also provides a hard scale

No momentum transfer : t = 0
creation/annihilation of quark at different space-time 
points   non local, forward matrix element⇒ non local, forward matrix element

Hard exclusive reactions:
exclusive  access t⇒ non local, forward matrix element
hard scale  struck parton of momentum x ⇒ non local, forward matrix element
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t

Generalized
Parton

Distributions
(GPDs)

N (p) N' (p')

Generalized Parton Distributions

Hadronic tensor decomposition (X. Ji):  
massless quarks, twist 2, spin 1/2 nucleon

“quark creation/annihilation at different 
points, + small transverse kick”

 ⇒ non local, forward matrix element Non local / off forward matrix elements

vector structure:

axial-vector:

F.T.Ji - chiral even GPD decomposition, twist 2
for TCS hadronic tensor: 

H
μν

TCS

4 quarks chiral-even GPDs, real functions
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Generalized Parton Distributions

unpolarized 
GPDs

polarized 
GPDs

without nucleon spin flip with nucleon spin flip

Chiral-even quark nucleon GPDs :

GPDs are associated to various helicity states of the quarks and nucleon spin orientation

“vector” “tensor”

“axial-vector” “pseudo-scalar”

spin 1/2× spin 1/2  

• GPDs contain correlation between quark's transverse distribution and their longitudinal momentum
• Distributions of (un)polarized quarks in (un)polarized nucleon

GPD E: unpolarized quarks in polarized nucleon (1 unit of spin flip)
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ΔΣ≈0.3

Impact parameter space 
x-dependent transverse space 
distributions

← gluons, sea quarks dominate valence region →
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Timelike Compton Scattering vs Spacelike Deeply Virtual Compton Scattering

• Most of knowledge on GPDs from DVCS and hard exclusive mesons measurement: 
H1/ZEUS, HERMES, JLab, COMPASS…

• GPDs are universal! How to demonstrate it?

DVCS and TCS have leading order, leading twist complex conjugate amplitudes
 ⇒ non local, forward matrix element extraction of GPDs from both processes independently
 ⇒ non local, forward matrix element comparison of “equivalent” spacelike and timelike processes for universality studies
 ⇒ non local, forward matrix element multi-observables fitting approaches to constrain all CFF simultaneously, assuming universality

TCS experiments are challenging: need of high intensity photon beams, interferences...

DVCS TCS
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Measuring Timelike Compton Scattering

γ N → e+e- N

= +

boost
to CM

φ: (hadronic plane, pair) φ
S
, θ

S
: (hadronic plane, target spin)

θ: (γ*, e–) Ψ: (hadronic plane, γ spin)

dσ: 5 or 6 independent
variables

choice: 
E or ξ, 
t, Q², φ, θ, 
if spin: φ

s
 or Ψ

s

TCS Bethe-Heitler

Various unpolarized, polarized cross sections, target and/or spin asymmetries or angular 
momenta are sensitive to different Compton Form Factors and GPDs

notations: σ (x-section) or A (asymmetry)≡[σσ↓-σ↑]/[σ2σ], index 1=beam polar., index 2=target polar.
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How to access GPDs?
Extraction via Compton Form Factors (CFFs)

(same for DVCS and TCS at asymptotic limit)

H, E ⇒ non local, forward matrix element

H̃, Ẽ ⇒ non local, forward matrix element

H, E ⇒ non local, forward matrix element

H̃, Ẽ ⇒ non local, forward matrix element

Compton Form Factors for quark chiral even GPDs H, E, H̃, Ẽ
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How to access GPDs?

Im(CFF) from DVCS and TCS
Single spin asymmetries, cross section
Access GPD at x= ±
 

Re(CFF) from DVCS and TCS
Cross section, double spin asymmetries, 
DVCS charge asym or TCS linearly pol. photon
Access GPD through integral over x

H(x,,t=0)

Probing GPD x vs ξ dependence with experimental observables:

GPD

Im part DVCS 
and TCS access
x = ± ξ
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Compton Form Factor fits from DVCS and TCS

TCS
DVCS
(cuts applied)

Method:

• Fitting DVCS and TCS observables at same ξ, t kinematics

• 8 CFFs following VGG model formalism (Im and Re associated to each chiral-even twist-2 GPD)

• Observables: unpolarized cross section and polarized x-sec differences in 16 bins in φ

• Uncertainties: 5% error/bin (unpolarized), 7% error/bin (polarized)
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Generated distributions

DVCS
unpolarized cross section polarized beam: Δσ

LU

TCS
unpolarized cross section circ. polarized beam: Δσ

U⊙U

+ 7 more distributions of polarized cross 
section differences:

// pol target: Δσ
UL

 ⊥ pol target: Δσ
UX

 (φ
S
=0°), Δσ

UY
 (φ

S
=90°)

double pol beam+ target: Δσ
LX

, Δσ
LY

, Δσ
LL

beam charge: Δσ
C
  

At Q² = 2.5 GeV², E = 11 GeV

 
+ 7 more distributions of polarized cross 
section differences:

// pol target: Δσ
UL

 ⊥ pol target: Δσ
UX

 (φ
S
=0°), Δσ

UY
 (φ

S
=90°)

double pol beam+ target: Δσ
X⊙U , Δσ

Y⊙U , Δσ
L⊙U

linearly pol beam: Δσ
LU

  

At Q² = 4.5 GeV², θ = 90°

In this talk, in both cases: ξ = 0.15, -t = 0.2 GeV²
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Sets of observables
Observables fitted simultenaously from pseudo-data, 
corresponding to current and future measurements at JLab at 12 GeV (indicated by letter for the 
experimental hall in columns 2, 3, 4) 

 - DVCS experiments: approved or taking data

- TCS experiments 'A', 'B' are approved 'B' started analysis, 'C' is PR-12-18-005  

independently combined

?
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Systematic studies and extraction of the results

• Stability of results: multiple iterations with random + smearing (1σ), then average mean and 
errors. Note: uncertainty limits are stable and more relevant than the "mean" value of the fit

Im(H̃) mean value extracted positive error from MINOS

data set (2) = 4 independent observables. red = average (gaus)

• If system is underconstrained, less than 8 independent observables:
asymmetric uncertainties, need to evaluate uncertainty dependence with correlation to other 
CFFs (varying phase space limits, generated distributions...)
in this talk: comparison of results using always same input parameters
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Compton Form Factors extracted from DVCS and TCS at twist 2
DVCS TCS

Comparison DVCS vs TCS

Assuming small higher twist 
versus fit uncertainties:
- Access same CFFs twist 2
- similar uncertainties for 
equivalent observables
- complementary if not same 
CFFs are extracted from DVCS 
and TCS

• unpolarized+beam: Im+Re( )ℋ)

• including longitudinal target: 
Access Im+Re( ) and Im( )ℋ) ℋ)̃)

• including transverse target:
Im+Re( ), Im( ), Im( )ℋ) ℋ)̃) ℰ)

Assuming large higher twist 
versus fit uncertainties: 
Universality studies, higher 
twist observations and timelike 
vs spacelike structure

Pseudo-data with 5% error on unpolarized σ, 7% pol. σ,16 bins φ, 7 params CFFs fits

Observables:
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Results: 8 parameters, 8 independent observables

DVCS TCS DVCS+TCS

Im(H)

Im(E)

Im(H̃)

Im(Ẽ)

Re(H)

Re(E)

Re(H̃)

Re(Ẽ)

• All CFFs extracted from DVCS and TCS, errors of same order  comparison, universality⇒ non local, forward matrix element
• Lower errors with DVCS vs TCS: TCS/BH < DVCS/BH. "real": higher statistics with DVCS

• DVCS+TCS: "real" scenario expect shift to direction of DVCS solution if shift to opposite 
directions from higher twists  combining fits assume GPDs universality + low higher twist/order⇒ non local, forward matrix element

7% error/16 bins φ
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Results: 8 parameters, 6 independent observables

Im(H)

Im(E)

Im(H̃)

Im(Ẽ)

Re(H)

Re(E)

Re(H̃)

Re(Ẽ)

More realistic scenario: hard to measure Δσ
LT

, large errors expected

• Problem is underconstained →asymmetric errors for Re(CFFs)

• Still possible to extract all CFFs (errors larger than scale for TCS real parts)

DVCS TCS DVCS+TCS
7% error/16 bins φ
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Combining independent observables from DVCS and TCS

Im(H)

Im(E)

Im(H̃)

Im(Ẽ)

Re(H)

Re(E)

Re(H̃)

Re(Ẽ)

Realistic scenario: longitudinal target single+double asym with DVCS, transverse target with TCS

• Similar result combined fits with 4+4 observables than 6+6 observables→ all CFFs extracted, 

thanks to independent information brought by the 2 processes

Caveat: assume low higher twist effects, and GPD universality

DVCS+TCS (previous slide, 
6 obs.): σ, Δσ

LU
, Δσ

UL
, Δσ

LL
, Δσ

U⊥ 

DVCS (4 obs.): σ, Δσ
LU

, Δσ
UL

, Δσ
LL

+ TCS (4 obs.): σ, Δσ
U⊙U , Δσ

U⊥ 

4+4 independent 
observables →6 independent
when combined
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Dynamic twist corrections for TCS
• leading-twist TCS hadronic part of 
amplitude with "Ji's" GPDs decomposition

• ad-hoc twist 3 corrections for gauge-invariance

• mass and Δ terms in skewness variables, 
related to light cone momentum fractions

R = corrected / asymptotic unpolarized cross sections, vs t (left) and vs Q'² (right)

From M. Boër, M. Guidal, M. Vanderhaeghen, 
Eur. Phys. J. A51 (2015) 8, 103
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Impact of dynamic twist corrections on DVCS+TCS fits

• Corrections applied: target mass and restoration of gauge invariance

• Impact on CFFs: ~10% on Re, ~1% on Im, opposite sign in DVCS and TCS

• Impact on DVCS+TCS fits: between "twist 2" and "DVCS" results; 1% (Im) to 10% (Re)
→ below uncertainties on CFFs 

twist 2 CFF

fit result (+1%)
DVCS+TCS

generated
TCS

generated 
DVCS

N
 it

er
at

io
ns

 (
10

0 
to

ta
l)

fit from all 
(un)polarized 
DVCS+TCS 
combinations

a*generated Im(H)
.95 1.     1.05

mass and Δ=(p-p') in skewness variable:

(corrected - asymptotic) asymmetries

Corrections Fit results
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What is expected with experimental measurements:

Depending on size of NLO and higher twist

- small effects: combine DVCS+TCS observables → global fits

- small/moderate effects: independent analysis → constraint on GPD universality

- large effects: observation of higher twist in spacelike (DVCS) vs timelike (TCS)

GPDs universality:
It is possible to independently extract CFFs from TCS and compare with results from DVCS

GPD models:
GPD models can be constrained from both DVCS and TCS independently or combining 
observables

GPD models and E:
TCS can bring constrain on GPD E →poorly constrained from DVCS, link to nucleon spin

Conclusion from fit results and expected physics
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Phase-space choice for GPD studies

8 bins in ξ and t

selected bin 
for projections
2018 proposal

Bins in proposal: 8 (Q'², ξ, t), 16 φ bins, 16 φ
S
 bins, 7.5 

<E<11 GeV, kinematic dependent binning in (θ, φ)

Where can we extract CFFs and GPDs? What is the impact of TCS experiment? 

8 bins for the fits

Updates: 
• extended phase-space, studies beyond what is in the proposal. Not yet decided what in final version
• Currently: -t up to 2 GeV², 5.5< E <11 GeV
• Next: lower Q'², will also study resonance region
• note: that extensions are not the main of physics case, "best" physics already in 2018 proposal
• note: other experiments (hall B, LHC) extend phase space due to their low statistics, but physics 
impact limited and lots of assumptions as they have big statistic uncertainties
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Physics impact of angular selections

θ vs φ, leptons CM angles

θ
CM γ*

e-

φ
CM e+

-t→0 forward limit:
 γ and γ* are collinear, Θ

γγ*
→0

γ P → e+e- P'

1) θ
CM

→0: e- becomes collinear with γ, φ
CM

→π 
2) θ

CM
→π: e+ becomes collinear with γ, φ

CM
→0

kinematic dependent “near-singularities”:

θ at given kinematics reflects TCS/BH rate

• while TCS angular distributions are smooth, 
BH presents "near singulariries" (1/me² terms)
corresponding to lepton + virtual photon + real 
photon become "collinear"

• effect to balance with kinematics (γγ* angle)

• reflects experimentally with one lepton taking 
most of the energy, near beam, and one lepton 
almost at rest: mostly cut by acceptance, but 
need to be reduced + interpretations

Why angular range in the proposal is drastically limited and we don't show such high statistics 
as other experiments may suggest (hall B, D): need to cut out BH peaks! no GPD physics there  
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Physics impact of angular selections
θ vs φ, leptons CM angles

T
C

S
 / B

H
 ra

te

phase-space cut avoiding BH peaks
θ

CM

γ P → e+e- P'

Avoiding near beam high energy lepton peaks, not resolvable with limited statistics and bins
+ not physics we are looking for

consequence to also increase TCS/BH rate, but statistic being limited, integrals over θ.
Projected observables takes that into account. Ideally θ~90° 

kinematic dependent cuts:

Remark: extended phase-space and extended measurements + improved statistic from 
"side bins" in the updated version of the proposal. Angular selection remain the same
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A
UT 

 versus φ
S
: experimental errors and model dependence

 ⇒ discriminate models

 ⇒ quark angular momenta

A
UT

 orthogonal 2 by 2: simul- 
taneous fits, reduce error 

-t=0.25 GeV²; ξ = 0.18, Q'²=5 GeV², 30°<θ<150°, 16*16 bins in φ & φ
S
.Model: VGG, various parametrizations

• Uncertainties on moment scaled to theory curves, using 43% target dilution, 90% polarization
• Small asymmetries case of "red" scenario using H+H̃ in event generator used for the proposal      

φ
S
=11.25° φ

S
=33.75° φ

S
=56.25°

φ
S
=123.75°φ

S
=101.25°φ

S
=78.75°

φ
S
=146.25° φ

S
=168.75°

Error bars on first moment fit A*sin(φ-φ
S
) for 8 φ

S 
bins and one (ξ, t, Q'²) bin versus models

+ A
exp

sin(φ-φ
S
)

no change in
 th

is projectio
ns, w

ill 
just u

pdate statis
tic

 w
ith

 new setup

no use as re
ference generator w

ith
 G

PD H
 only,

 le
ss m

odel d
ependent

this fig
ure shows parametriz

atio
n diffe

rences, m
oslty

 on G
PD E and angular m

omenta
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Proposal physics case and status

summary in the proposal document
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Proposal physics case and status
Theory review
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Proposal physics case and status
PAC review
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To do list (only physics case)

• Write it better and involve theorists

• Perspective TCS vs DVCS and other past/future measurements at JLab and worldwide

- few DVCS projections 

- updating fits with actual DVCS uncertainties, discuss DVCS in proposal

- more TCS projections and what can really be achieved from full program

• Higher twist impact

- including higher twist and NLO in fits: some higher twist included, need to be "presentable"

- theory publications on higher twist 

• Strengthen case with publications on fits, calculations, methods

• 2D observables rather than 1D "as HERMES", including fitting maps

SUMMARY
Status of physics case:

• Motivations need to be better addressed for the PAC

• Need of demonstration for some statements in the proposal (higher twist...)

• Would benefit from more theory support: input in physics case, new peer-reviewed publications 
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