
JLEIC Software Status

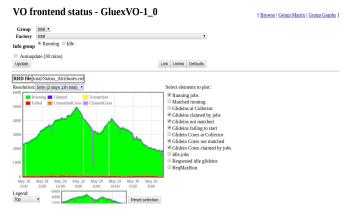
Status of Simulation and Reconstruction Software at JLEIC

Wouter Deconinck**, Markus Diefenthaler*, Yulia Furletova*, **David Lawrence***, Maurizio Ungaro*, Zhiwen Zhao*** (... and others ...)

> *Jefferson Lab **William and Mary ***Duke

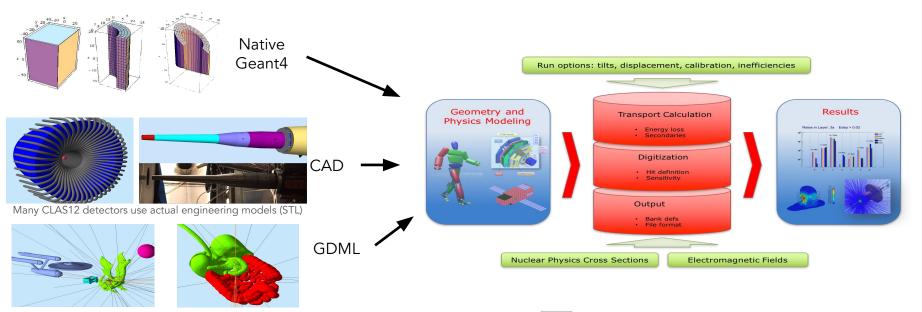
Near Term Goals/Purpose:

- 1. Study ability to measure Physics Processes
 - a. Interface to MC Event Generators
 - b. Provide detector responses (Fast MC for acceptance/resolution, ab initio for backgrounds)
- 2. Study/Refine Detector Design
 - a. Interface to MC Event Generators
 - b. Provide detector responses (Fast MC for acceptance/resolution, ab initio for backgrounds)

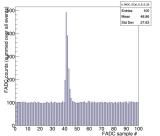

(JLab) Experimental Computing Performance Plan

- Insure adequate computing resources with \$850K investment in FY18
 - Use local farm for reconstruction, calibration and analysis
 - Use distributed resources for MC
 - Storage and associated bandwidth scaled to support all resources
- Open Science Grid
 - GlueX -6 institutions contribute resources
 - In a recent 2 week period ~1M core-hours
 - Expect yearly 35M-50M core-hours
 - Investigating options for CLAS12

GlueX reconstruction code at NERSC


- Scale test in July
- Anticipate 70M core-hours/year
- Cloud Computing available for bursts

	Current	FY19	FY20				
CPU (M-core-hours/year)	37	70	90				
Scratch Disk & Cache Disk (PB)	0.65	1.1	2				
Tape (GB/s)	3	5	7				
WAN bandwidth (Gbps)	10	10	10				
Current and Projected Capacity							



GEMC Framework

- Input: Native, CAD, GDML, can be mixed and matched.
- FADC Mode 1 (crate, slot channel)
- Background Merging.
- FAST MC Mode.
- Digitization uses actual CCDB calibration constants.

GEMC EC FADC Mode 1	
---------------------	--

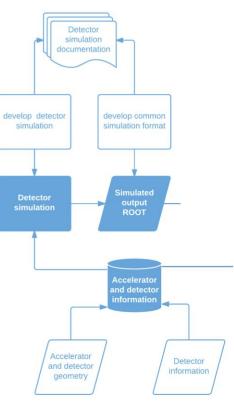
** : 1					
				· · · · · · ·	
2					
2.			;		* *
- K 1/	Milk	100	<u>s K 1/4</u>	Witk	1000 11 100

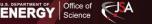
Merging of random trigger data with GEMC

Detector simulations

GEMC (M. Ungaro)

ideal for detector concepts

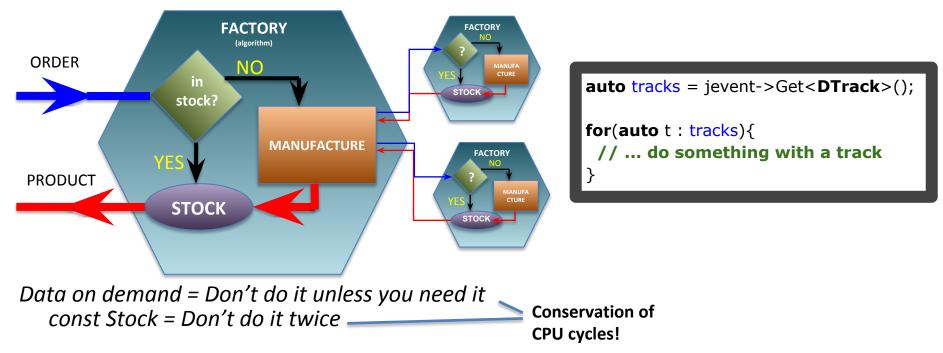

- application for detector simulations based on Geant4
- reducing the learning curve to use Geant4
 - macro language for detector design
 - various geometry definitions (GEMC, gdml, CAD)
 - data card (XML) to steer application, all Geant4 macro commands supported by design
 - GUI for interactive sessions
 - excellent documentation
- full Geant4 support: adding Geant4 features relatively simple
- transparent in-house development


GEMC for JLEIC (Z. Zhao)

Simulations level

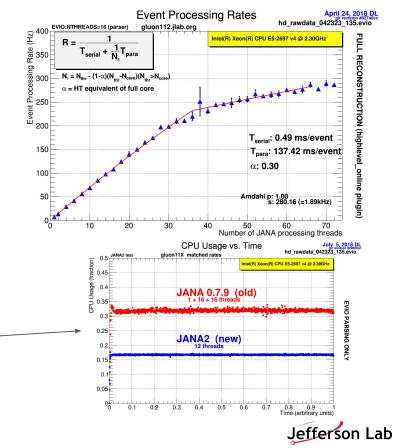
same application for fast and full detector simulations fully adjustable simulation levels, e.g.,

- only material transport
- using Geant4 for geometry and physics only in some critical areas and ad-hoc non-Geant4 models in other regions



JANA: C++ Software Framework for Reconstruction Workflow

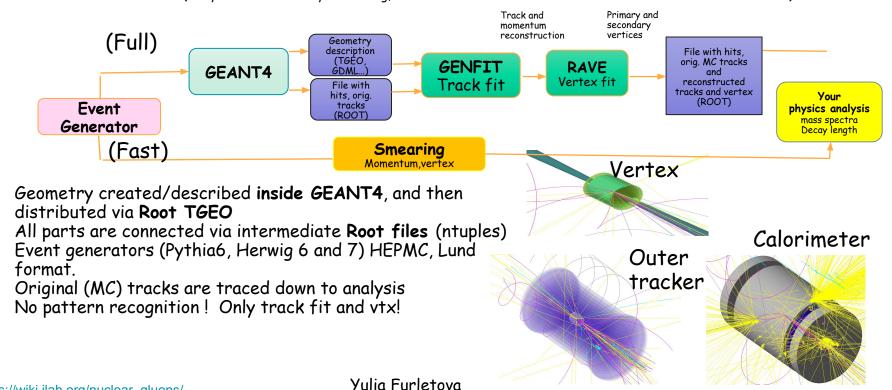
JANA Factory Model



rson Lab

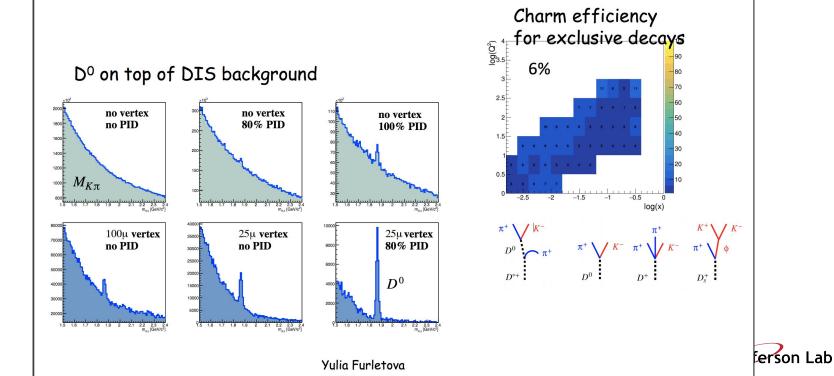
JANA: C++ Software framework for Reconstruction Workflow

- Multi-threaded
- Modular, user-focused design
- Developed over the past 13 years specifically for 12GeV era of high rate experiments at JLab
- Used for GlueX online DQM, offline reconstruction and L3 trigger system*


 LDRD project for development of _ JANA2 started in FY18

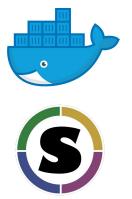
JANA rate scaling for GlueX Data Reconstruction

RECONSTRUCTION CHAIN (FOR LDRD)


This chain has been developed to validate tracking and vertex parameters and was used for JLAB LDRD- 1601/1701 project ("Nuclear gluons with charm at EIC") to estimate a detector effect on a charm reconstruction. (Many thanks to Whitney Armstrong, Alexander Kiselev and "software consortium" for ideas and discussions)

8

Analysis


- ✓ Process charm (BGF)-only events
- ✓ Process and add all "background" events (all other non -BGF DIS events)
- ✓ Estimate efficiency and set a requirements for detector (PID, vertex, etc)

Containers

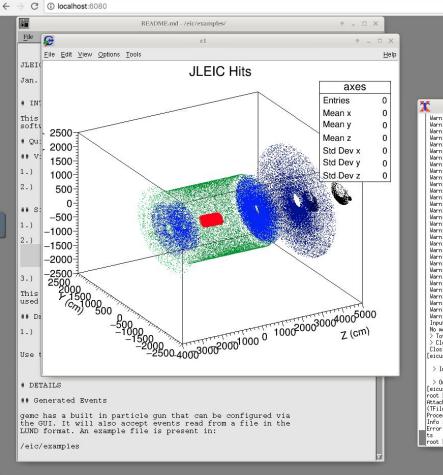
- 1. Install Docker or Singularity
- 2. Run container

```
docker run -p 6080:6080 -v /my/data/dir:/data -it --rm
electronioncollider/jleic:1.0.4
or
singularity shell shub://electronioncollider/jleic:1.0.4
/container/utilities/xstart.csh
```


3. Point browser to:

http://localhost:6080

 ■ ba79a6b26067:1 () - ×


 ← → C
 ① localhost:6080/vnc.html

JLEIC Desktop Environment via web browser on host

C localhost:6080/vnc.html	خ 🗣 🗉 🕏
Examples.md - /eic/doc/examples/	+ _ E ×
<u>File Edit Search Preferences Shell Macro Windows</u>	Help
1	
JLEIC container example README	eicuser@ba79a6b26067:/eic/app/jlab 🛧 💷
Jan. 31, 2018 David Lawrence	> BANKS version: 1,3 > CCDB version: 1,06.02
# INTRODUCTION	> CLHEP version: PPO > EVI0 version: 5,1 > GENT4 version: PPO
This provides an example for exercising JLEIC simulation	> GEMC version: devel > JANA version: 0,7,7p1
software in this container.	MLIBRARY version: 1.1 > MYSQL installed in /eic/app/jlab/2.1/Linux_Cent057.4.1708-x86_6 4.8.5/mwsql/lib
# Quick Start	<pre>4.0.3 Migsql/110 > 0T version: 5.6.2 > R00T version: PR0</pre>
## View Geometry	SCONS version: 1,5 > XERCESC version: SYS
1.) cd /eic/doc/examples	Welcome to the JELIC Container!
2.) gemc example.gcard	To get started, please read the REAIME by typing
## Simulate events	less /eic/doc/examples/Examples.md
1.) cd /eic/doc/examples	[eicuser@ba79a6b26067 jlab]\$ [
2.) gemc -INPUT_GEN_FILE="LUND,pythia-sample.lund" \	
-OUTPUT="evio,sample_out.evio" \ -USE_GUI=0 \	
example.gcard	
3.) evio2root -INPUTF=sample_out.evio	
This should produce a file sample_out.root that can be used to browse and plot data.	
## Draw Hits	
1.) root sample_out.root -x DrawHits.C	
Use the mouse to rotate the view.	
use the mouse to fotate the view.	
# DETAILS	
## Generated Events	
gemc has a built in particle gun that can be configured via	
the GUI. It will also accept events read from a file in the LUND format. An example file is present in:	
/eic/doc/examples	
## Accessing Simulated Data	
Simulated data is written to an EVIO file and then converted	
into a ROOT file with the evio2root (see Quick Start above).	

Talk Title Here

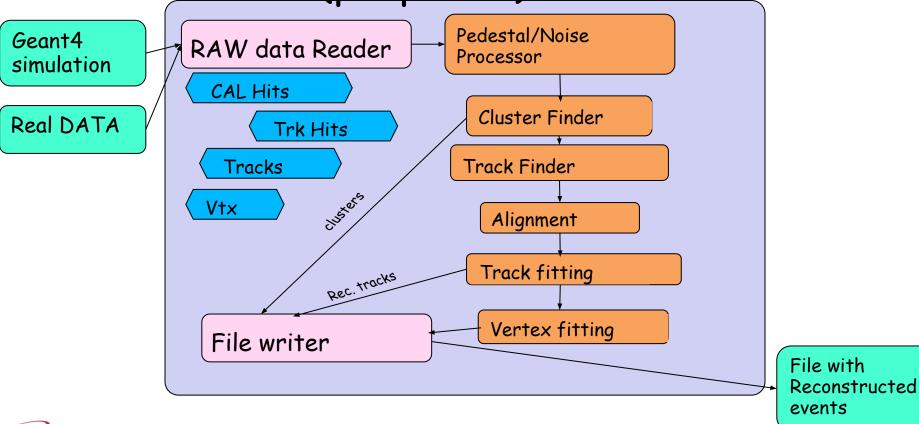

ba79a6t	o26067:1 () - 🗙				
$\leftrightarrow \rightarrow G$	(i) localhost:6	080/vnc.html		A 🗣 🛛 🦸 🖉	1
	N. Events: [Seneral Camera Camera Camera Camera Camera Camera Signals Signals Catolalle Signals Physics	genc 2.6	• - • × ®Exit		

13

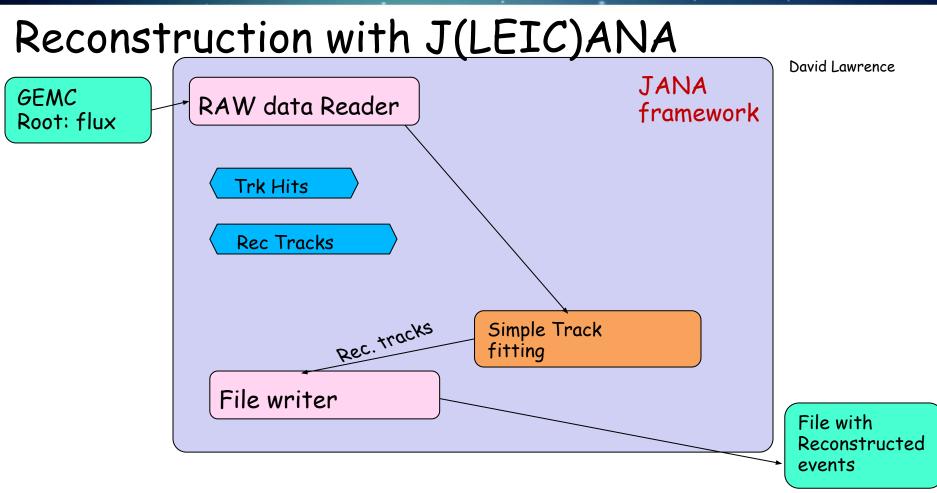
B bdf17e2e0a64:1 () - noVNC ×

🛧 🌒 🚮 🗉 🔊 📣 🐔 🗄

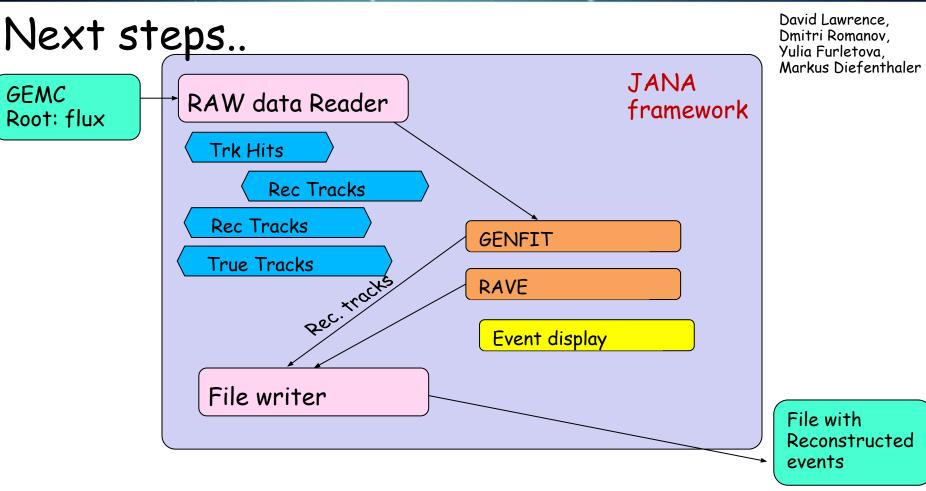
Summary and Future


- Simulation
 - GEMC (Geant4) used for simulation
 - Refining and merging geometries
- Reconstruction
 - Some work completed on tracking/vertexing using GenFit and RAVE
 - Actively integrating reconstruction components into single project using JANA framework
- Containers
 - jleic containers published on Docker hub and Singularity hub
 - targeting interactive desktop/laptop use vs. batch

Backups



Reconstruction (proposed)



Jefferson Lab Thomas Jefferson National Accelerator Facility

Yulia Furletova

Yulia Furletova

Yulia Furletova

Ť eicuser@ba79a6b26067:/eic/app/jlab 1 - D X > BANKS version: 1.3 > CCDB version: 1.06.02 > CLHEP version: PRO > EVIO 5.1 version: > GEANT4 version: PRO > GEMC version: devel > JANA version: 0.7.7p1 > MLIBRARY version: 1.1 > MYSQL installed in /eic/app/jlab/2.1/Linux_Cent0S7.4.1708-x86_64-gcc 4.8.5/mysql/lib > QT version: 5.6.2 > R00T version: PRO > SCONS version: 1.5 > XERCESC version: SYS Welcome to the JELIC Container! To get started, please read the README by typing less /eic/doc/examples/Examples.md [eicuser@ba79a6b26067 jlab]\$ [

```
JLEIC container example README
Jan. 31. 2018 David Lawrence
```

INTRODUCTION

This provides an example for exercising JLEIC simulation software in this container.

Quick Start

View Geometry

- 1.) cd /eic/doc/examples
- 2.) gemc example.gcard

```
## Simulate events
```

```
1.) cd /eic/doc/examples
```

```
2.) gemc -INPUT_GEN_FILE="LUND,pythia-sample.lund" \
        -OUTPUT="evio,sample_out.evio" \
        -USE_GUI=0 \
        example.gcard
```

3.) evio2root -INPUTF=sample_out.evio

This should produce a file sample_out.root that can be used to browse and plot data.

```
JLEIC container example README
```

```
Jan. 31, 2018 David Lawrence
```

INTRODUCTION

This provides an example for exercising JLEIC simulation software in this container.

Quick Start

```
## View Geometry
```

- 1.) cd /eic/doc/examples
- 2.) gemc example.gcard

```
## Simulate events
```

```
1.) cd /eic/doc/examples
```

```
2.) gemc -INPUT_GEN_FILE="LUND,pythia-sample.lund" \
        -OUTPUT="evio,sample_out.evio" \
            -USE_GUI=0 \
            example.gcard
```

3.) evio2root -INPUTF=sample_out.evio

```
This should produce a file sample_out.root that can be used to browse and plot data.
```

\rightarrow C	Secure https://jeffersonlab.github.io/swcarpentry-jlab-singularity/02-jlabce-container/index.html								☆ ●	··· B	ë
	Home	Code of Conduct	Setup	Episodes 👻	Extras -	License	Improve this page 🖋	Search			
	C Using Singularity at Jefferson Lab								>		
	<			Using Sin	gularity	v at Jeff	erson Lab		>		

Running the JLab CE container

Overview

Teaching: 5 min Exercises: 10 min

How can we replicate the Jefferson Lab Common Environment on other systems?

Questions

Objectives

- Understand how tags are used to version containers.
- · Load and use the Jefferson Lab Common Environment on the interactive farm nodes.

Tags: versioning of containers

In the previous episode we downloaded the lolcow container, at shub://GodloveD/lolcow and the container was stored with the filename
GodloveD-lolcow-master-latest.simg. Let's analyze that URL and filename.

- shub indicates that the URL points to a Singularity Hub location.
- GodloveD is the user who provided this container (David Godlove, if you must know, see for example this GitHub page).
- lolcow is the name of the repository that was used to build this container.
- master is the branch from which the container was built
- latest is the tag of the container, with latest for the most recent build.

The tag is commonly used for versioning of containers. By specifying the URL as shub://GodloveD/lolcow:latest we can explicitly ask for the latest version of the lolcow container.

Since there is not a lot of versioning one can do on this container, we will first introduce a container where versions ARE important.

Retrieving the Jefferson Lab Common Environment container from Singularity Hub

Now that we have the basics of containers behind us, we can use our first 'useful' physics container: the Jefferson Lab Common Environment container. This container replicates the scientific software suite that is installed on the interactive farm nodes, but packages it up in a nice container.

Of course, there is no real practical need to load the Jefferson Lab Common Environment on a Jefferson Lab interactive farm node, but bear with me for now.

Here is how we download the container:

JLab Software Carpentry Workshop:

:

EIC container effort feeding back into production operations at JLab