

Meson loop effects within nonlocal chiral EFT

Wally Melnitchouk

in collaboration with Yusupujiang Salamu, Ping Wang, Chueng Ji, Tony Thomas

Local chiral EFT

- A common and natural explanation for flavor asymmetries in the nucleon $(\bar{d} \bar{u}, s \bar{s}, ...)$ is a meson "cloud"
- Most efforts have been within low-energy models of QCD
 - → relatively successful phenomenology, but connection with QCD often unclear
- Rigorous connection with QCD established via chiral EFT

$$\mathcal{L}_{\text{eff}} = \frac{g_A}{2f_\pi} \, \bar{\psi}_N \gamma^\mu \gamma_5 \, \vec{\tau} \cdot \partial_\mu \vec{\pi} \, \psi_N - \frac{1}{(2f_\pi)^2} \, \bar{\psi}_N \gamma^\mu \, \vec{\tau} \cdot (\vec{\pi} \times \partial_\mu \vec{\pi}) \, \psi_N + \dots$$

Weinberg (1967)

At leading order, pion-nucleon interaction includes pion rainbow, Kroll-Ruderman (needed for gauge invariance), and tadpole diagrams

Matching of quark-level and hadron-level operators with same symmetries

$$\mathcal{O}_q^{\mu_1\cdots\mu_n} = \sum_h c_{q/h}^{(n)} \,\mathcal{O}_h^{\mu_1\cdots\mu_n}$$

yields convolution representation for PDFs

$$q(x) = \sum_{h} \int_{x}^{1} \frac{dy}{y} f_{h}(y) \, q_{v}^{h}(x/y)$$
 hadronic splitting pDF in loop functions hadron

Parton distributions

More specifically, contributions to quark PDF from different diagrams can be organized as:

+
$$([f_{\pi} + f_{\text{bub}}] \otimes q_{\pi}(x) + (f_{\text{KR}} \otimes \Delta q_N)(x)$$

(depends on N helicity PDF)

Chiral splitting functions

Splitting functions for pion rainbow diagram

$$f_{\pi}^{(\text{rbw})}(y) = f^{(\text{on})}(y) + f^{(\delta)}(y)$$

has on-shell $(y = k^{+}/p^{+} > 0)$ and $\delta(y)$ contributions!

$$f^{(\text{on})}(y) = \frac{g_A^2 M^2}{(4\pi f_\pi)^2} \int dk_\perp^2 \frac{y (k_\perp^2 + y^2 M^2)}{(1 - y)^2 D_{\pi N}^2} \mathcal{F}^2$$

$$D_{\pi N} = -\frac{k_{\perp}^2 + y^2 M^2 + (1 - y)m_{\pi}^2}{1 - y}$$

$$f^{(\delta)}(y) = \frac{g_A^2}{4(4\pi f_\pi)^2} \int dk_\perp^2 \log\left(\frac{k_\perp^2 + m_\pi^2}{\mu^2}\right) \delta(y) \mathcal{F}^2$$

$$\mu = k^-$$
 cutoff

Bubble diagram contributes only at y = 0 (hence x = 0)

$$f_{\pi}^{\text{(bub)}}(y) = \frac{8}{g_A^2} f^{(\delta)}(y)$$

 \rightarrow contributes to lowest moment, but not at x > 0

Pion rainbow diagram with nucleon coupling

$$f_N^{\text{(rbw)}}(y) = f^{\text{(on)}}(y) + f^{\text{(off)}}(y) - f^{(\delta)}(y)$$

$$f^{(\text{off})}(y) = \frac{g_A^2 M^2}{(4\pi f_\pi)^2} \int dk_\perp^2 \frac{2y}{(1-y)D_{\pi N}} \mathcal{F}^2 \qquad \text{additional off-shell}$$

contribution at y > 0

Tadpole contribution also only at y = 0

$$f_{\pi}^{(\text{tad})}(y) = -f_{\pi}^{(\text{bub})}(y)$$

KR diagram has off-shell and δ -function contributions

$$f_N^{(KR)}(y) = -f^{(off)}(y) + 2f^{(\delta)}(y)$$

Satisfy gauge-invariance relation *

$$f_N^{(\text{rbw})}(y) + f_N^{(\text{KR})}(y) = f_\pi^{(\text{rbw})}(y)$$

For point-like nucleons and pions, integrals divergent

→ finite size of nucleon provides natural regularization scale

e.g. on-shell function

$$\mathcal{F} = \Theta(\Lambda^2 - k_\perp^2)$$
 k_\perp cutoff

$$\mathcal{F} = \left(rac{\Lambda^2 - m_\pi^2}{\Lambda^2 - t}
ight) \quad t$$
 monopole

$$\mathcal{F} = \exp\left[(t-m_\pi^2)/\Lambda^2
ight] \quad t ext{ exponential} \qquad \qquad \mathcal{F} = y^{-lpha_\pi(t)} \exp\left[(t-m_\pi^2)/\Lambda^2
ight] \quad \mathsf{Regge}$$

$$\mathcal{F} = \exp\left[(M^2 - s)/\Lambda^2\right]$$
 s-dep. exponential

$$\mathcal{F} = \left[1 - rac{(t-m_\pi^2)^2}{(t-\Lambda^2)^2}
ight]^{1/2}$$
 Pauli-Villars

$$\mathcal{F} = y^{-lpha_{\pi}(t)} \exp\left[(t - m_{\pi}^2)/\Lambda^2\right]$$
 Regge

lacktriangle E866 $ar{d}-ar{u}$ data can be fitted with range of regulators

$$\bar{d} - \bar{u} = \begin{bmatrix} f_{\pi}^{\text{(rbw)}} + f_{\pi}^{\text{(bub)}} \end{bmatrix} \otimes \bar{q}_{v}^{\pi}$$

$$\sim f^{\text{(on)}} + f^{(\delta)} \qquad \sim f^{(\delta)}$$

\rightarrow only on-shell function contributes at x > 0

average pion "multiplicity"

$$\langle n \rangle_{\pi N} = 3 \int_0^1 dy \, f^{(\text{on})}(y)$$
$$\sim 0.25 - 0.3$$

McKenney, Sato, WM, C. Ji (2016)

Integrated asymmetry $I = \int_0^1 dx (\bar{d} - \bar{u})$

 \rightarrow N on-shell contribution \approx total!

Effect on moments of PDFs

- → coefficients of leading nonanalytic (LNA) terms, reflecting infrared behavior, are model-independent!
- \rightarrow QCD therefore *predicts* a nonzero asymmetry from π loops

$$\int_0^1 dx \, (\bar{d} - \bar{u}) = \frac{(3g_A^2 - 1)}{(4\pi f_\pi)^2} \, m_\pi^2 \log(m_\pi^2/\mu^2) + \text{analytic in } m_\pi^2$$
Thomas, WM, Steffens (2000)

 \rightarrow nonanalytic behavior vital for understanding lattice data on PDF moments at low m_{π}

Strange quarks

lacktriangle Some indication of strange-antistrange asymmetry from $u/ar{
u}$ DIS

$$S^{-} = \int_{0}^{1} dx \, x(s - \bar{s}) = (2.0 \pm 1.4) \times 10^{-3}$$
 NuTeV (2007)

□ Chiral SU(3) effective theory analysis suggests natural mechanism for generating strange asymmetry

 \longrightarrow gauge invariance requires the relations $f_{YK}^{(\mathrm{rbw})} + f_{YK}^{(\mathrm{KR})} = f_{KY}^{(\mathrm{rbw})}$

$$f_{YK}^{(\text{rbw})} + f_{YK}^{(\text{KR})} = f_{KY}^{(\text{rbw})}$$
$$f_K^{(\text{tad})} + f_K^{(\text{bub})} = 0$$

Convolution representation

$$\bar{s} = \left(f_{KY}^{(\text{rbw})} + f_{K}^{(\text{bub})}\right) \otimes \bar{s}_{K}$$

$$s = \left(\bar{f}_{YK}^{(\text{rbw})} \otimes s_{Y} + \bar{f}^{(\text{KR})} \otimes s_{Y}^{(\text{KR})}\right) + \bar{f}_{K}^{(\text{tad})} \otimes s_{K}^{(\text{tad})}$$

$$\bar{f}(y) \equiv f(1-y) \qquad \sim \Delta u, \Delta d \qquad \sim u, d$$

- \rightarrow KY splitting functions regularized using 1 Pauli-Villars subtraction
- \rightarrow δ -function terms require 2 subtractions (parameters μ_1, μ_2)
- \rightarrow since $f_K^{(\mathrm{tad})}(y) \sim \delta(y)$, tadpole term generates valence-like strange-quark PDF (nonzero at x > 0!) through convolution

$$\sim s_K^{(\mathrm{tad})}(x)$$

□ Constraints on cutoff parameters from $pp \to \Lambda X$ and total $(s + \bar{s})_{loops} \le (s + \bar{s})_{total}$

X. Wang, C. Ji, WM, Salamu, Thomas, P. Wang (2016)

\square Breakdown into individual contributions to s(x)

$$s(x) = (s^{(\text{on})} + s^{(\text{off})} + s^{(\delta)})_{\text{rbw}} + s^{(\delta)}_{\text{tad}} + (s^{(\text{off})} + s^{(\delta)})_{\text{KR}}$$

$$= \underbrace{s^{(\text{on})}_{\text{rbw}} + s^{(\text{off})}_{\text{rbw}} + s^{(\text{off})}_{\text{KR}}}_{\text{on-shell}} + \underbrace{s^{(\text{off})}_{\text{rbw}} + s^{(\delta)}_{\text{tad}} + s^{(\delta)}_{\text{KR}}}_{\delta\text{-function}},$$

$$\underbrace{s^{(\text{on})}_{\text{rbw}} + s^{(\text{off})}_{\text{rbw}} + s^{(\text{off})}_{\text{KR}}}_{\text{off-shell}} + \underbrace{s^{(\delta)}_{\text{rbw}} + s^{(\delta)}_{\text{tad}} + s^{(\delta)}_{\text{KR}}}_{\delta\text{-function}},$$

$$\overline{s}(x) = (\overline{s}^{(\text{on})} + \overline{s}^{(\delta)})_{\text{rbw}} + \overline{s}^{(\delta)}_{\text{bub}}$$

$$= \underline{\overline{s}^{(\text{on})}_{\text{rbw}}} + \underline{\overline{s}^{(\delta)}_{\text{rbw}}} + \underline{\overline{s}^{(\delta)}_{\text{bub}}},$$
on-shell δ -function

■ Breakdown into individual contributions to s(x)

- \rightarrow large cancellations between off-shell terms in rainbow & KR, and between δ -function terms in rainbow, KR and tadpole
- \rightarrow total s(x) well approximated by on-shell part of rainbow; total off-shell & δ -function terms small
- explains phenomenological success of loop calculations in terms of on-shell rainbow only!

lacksquare Gives rise to small but (mostly) positive $s-ar{s}$ distribution

- \rightarrow x-weighted difference $S^- = (0.4 1.1) \times 10^{-3}$
- \rightarrow presence of δ -function terms in $\bar{s}(x)$ means that integrals of s and \bar{s} at x>0 need not cancel!

Regularization

- lacksquare For point particles, regulator functions $\mathcal F$ for on-shell, off-shell and δ -function distributions (which could be different!) are unity
 - \rightarrow UV divergent ... need to suppress large-k contributions
- Not all regularization schemes preserve symmetries of the field theory (Lorentz invariance, gauge invariance, chiral symmetry)
 - → dimensional regularization, Pauli-Villars (example of finite-range regulator) known to preserve chiral and Lorentz symmetries
 - → naive application of (some) hadronic form factors can lead to problems with gauge invariance
- A solution which allows preservation of symmetries with form factors is to use *nonlocal* theory!

Nonlocal chiral EFT

- For interactions of finite-sized hadrons, it is natural to imagine interactions would not necessarily be at a single point, but smeared out over spacetime
 - → generalize local chiral SU(3) Lagrangian ...

$$\begin{split} \mathcal{L}^{(\text{local})}(x) &= \bar{B}(x)(i\gamma^{\mu}\mathscr{D}_{\mu,x} - M_B)B(x) + \frac{C_{B\phi}}{f} \left[\bar{p}(x)\gamma^{\mu}\gamma^{5}B(x)\,\mathscr{D}_{\mu,x}\phi(x) + \text{h.c.} \right] \\ &+ \overline{T}_{\mu}(x)(i\gamma^{\mu\nu\alpha}\mathscr{D}_{\alpha,x} - M_{T}\gamma^{\mu\nu})\,T_{\nu}(x) + \frac{C_{T\phi}}{f} \left[\bar{p}(x)\Theta^{\mu\nu}T_{\nu}(x)\,\mathscr{D}_{\mu,x}\phi(x) + \text{h.c.} \right] \\ &+ \frac{iC_{\phi\phi^{\dagger}}}{2f^{2}} \bar{p}(x)\gamma^{\mu}p(x) \left[\phi(x)(\mathscr{D}_{\mu,x}\phi)^{\dagger}(x) - \mathscr{D}_{\mu,x}\phi(x)\phi^{\dagger}(x) \right] \\ &+ \mathscr{D}_{\mu,x}\phi(x)(\mathscr{D}_{\mu,x}\phi)^{\dagger}(x) + \cdots \end{split}$$

covariant derivatives

$$\mathscr{D}_{\mu,x}B(x) = \left[\partial_{\mu} - ie_{B}^{q} \mathscr{A}_{\mu}(x)\right]B(x),$$
 $\mathscr{D}_{\mu,x}T^{\nu}(x) = \left[\partial_{\mu} - ie_{T}^{q} \mathscr{A}_{\mu}(x)\right]T^{\nu}(x),$
 $\mathscr{D}_{\mu,x}\phi(x) = \left[\partial_{\mu} - ie_{\phi}^{q} \mathscr{A}_{\mu}(x)\right]\phi(x),$
e.m. field

meson fields

$$\phi = \left(egin{array}{cccc} rac{1}{\sqrt{2}}\pi^0 + rac{1}{\sqrt{6}}\eta & \pi^+ & K^+ \ \pi^- & -rac{1}{\sqrt{2}}\pi^0 + rac{1}{\sqrt{6}}\eta & K^0 \ K^- & ar{K}^0 & -rac{2}{\sqrt{5}}\eta \end{array}
ight)$$

octet baryon fields

$$\phi = \begin{pmatrix} \frac{1}{\sqrt{2}}\pi^0 + \frac{1}{\sqrt{6}}\eta & \pi^+ & K^+ \\ \pi^- & -\frac{1}{\sqrt{2}}\pi^0 + \frac{1}{\sqrt{6}}\eta & K^0 \\ K^- & \bar{K}^0 & -\frac{2}{\sqrt{6}}\eta \end{pmatrix} \qquad B = \begin{pmatrix} \frac{1}{\sqrt{2}}\Sigma^0 + \frac{1}{\sqrt{6}}\Lambda & \Sigma^+ & p \\ \Sigma^- & -\frac{1}{\sqrt{2}}\Sigma^0 + \frac{1}{\sqrt{6}}\Lambda & n \\ \Xi^- & \Xi^0 & -\frac{2}{\sqrt{6}}\Lambda \end{pmatrix}$$

decuplet baryon fields

$$T^{ijk}_{\mu} = \Delta, \Sigma^*, \Xi^*, \Omega$$

Nonlocal chiral EFT

- For interactions of finite-sized hadrons, it is natural to imagine interactions would not necessarily be at a single point, but smeared out over spacetime
 - → ... to nonlocal Lagrangian

$$\mathcal{L}^{(\text{nonloc})}(x) = \bar{B}(x)(i\gamma^{\mu}\mathcal{D}_{\mu,x} - M_{B})B(x) + \bar{T}_{\mu}(x)(i\gamma^{\mu\nu\alpha}\mathcal{D}_{\alpha,x} - M_{T}\gamma^{\mu\nu})T_{\nu}(x)$$

$$+ \bar{p}(x) \begin{bmatrix} C_{B\phi} \gamma^{\mu}\gamma^{5}B(x) + \frac{C_{T\phi}}{f}\Theta^{\mu\nu}T_{\nu}(x) \end{bmatrix}$$

$$\times \int d^{4}a \,\mathcal{G}_{\phi}^{q}(x, x+a)F(a) \,\mathcal{D}_{\mu,x+a}\phi(x+a) + \text{h.c.}$$

$$+ \frac{iC_{\phi\phi^{\dagger}}}{2f^{2}}\bar{p}(x)\gamma^{\mu}p(x) \int d^{4}a \int d^{4}b \,\mathcal{G}_{\phi}^{q}(x+b, x+a)F(a)F(b)$$

$$\times \left[\phi(x+a)(\mathcal{D}_{\mu,x+b}\phi)^{\dagger}(x+b) - \mathcal{D}_{\mu,x+a}\phi(x+a)\phi^{\dagger}(x+b) \right]$$

$$+ \mathcal{D}_{\mu,x}\phi(x)(\mathcal{D}_{\mu,x}\phi)^{\dagger}(x) + \cdots,$$

- \Longrightarrow gauge link $\mathcal{G}_{\phi}^{q}(x,y)=\exp\left[-ie_{\phi}^{q}\int_{x}^{y}dz^{\mu}\mathscr{A}_{\mu}(z)\right]$ preserves local gauge invariance of fields
- \longrightarrow coordinate space meson-baryon vertex form factor F(a) in Lagrangian

Expand gauge link to lowest order

$$egin{align} \mathcal{G}_\phi^q(x+b,x+a) &= \exp\left[-ie_\phi^q\,(a-b)^\mu\int_0^1dt\,\mathscr{A}_\muig(x+at+b(1-t)ig)
ight] \ &= 1 \;+\;\delta\mathcal{G}_\phi^q\;+\;\cdots\;, \end{split}$$

→ allows nonlocal Lagrangian to be written as sum of free and interacting parts, with latter consisting of nonlocal purely <u>hadronic</u>, <u>electromagnetic</u> (from 1st term), and <u>gauge-link</u> parts (from 2nd term)

$$\mathcal{L}_{\text{link}}^{(\text{nenloc})}(x) = -ie_{\phi}^{q} \, \bar{p}(x) \left[\frac{C_{B\phi}}{f} \, \gamma^{\rho} \gamma^{5} B(x) + \frac{C_{T\phi}}{f} \, \Theta^{\rho\nu} T_{\nu}(x) \right]$$

$$\times \int_{0}^{1} dt \, \int d^{4}a \, F(a) \, a^{\mu} \, \partial_{\rho} \phi(x+a) \mathscr{A}_{\mu}(x+at) + \text{h.c.}$$

$$+ \frac{e_{\phi}^{q} C_{\phi\phi^{\dagger}}}{2f^{2}} \, \bar{p}(x) \gamma^{\rho} p(x) \int_{0}^{1} dt \, \int d^{4}a \, \int d^{4}b \, F(a) \, F(b) \, (a-b)^{\mu}$$

$$\times \left[\phi(x+a) \partial_{\rho} \phi^{\dagger}(x+b) - \partial_{\rho} \phi(x+a) \phi^{\dagger}(x+b) \right] \mathscr{A}_{\mu} \left(x + at + b(1-t) \right)$$

 Gauge link part of Lagrangian generates additional interactions specific to the nonlocal theory

- → there are also nonlocal contributions to all the other diagrams!
- \rightarrow illustrate for case of a (k^2 -dependent) dipole form factor

$$\widetilde{F}(k) = \left(\frac{\overline{\Lambda}}{D_{\Lambda}}\right)^2$$
 $D_{\Lambda} = k^2 - \Lambda^2 + i\varepsilon$ $\overline{\Lambda}^2 \equiv \Lambda^2 - m_{\phi}^2$

e.g. meson rainbow diagram

$$f_{\phi B}^{(\mathrm{rbw})}(y) = \frac{C_{B\phi}^2 \overline{M}^2}{(4\pi f)^2} \Big[f_B^{(\mathrm{on})}(y) + f_B^{(\delta)}(y) - \delta f_B^{(\delta)}(y) \Big]$$

on-shell term

$$f_B^{
m (on)}(y) = \overline{\Lambda}^8 \int\! dk_\perp^2 \, rac{y \left[k_\perp^2 + (yM+\Delta)^2
ight]}{ar{y}^2 \, D_{\phi B}^2 \, D_{\Lambda B}^4},$$

 δ -function term

$$\begin{split} f_B^{(\delta)}(y) &= -\frac{\overline{\Lambda}^8}{\overline{M}^2} \int dk_\perp^2 \int_0^1 dz \, \frac{z^3}{(k_\perp^2 + \Omega)^4} \, \delta(y) \\ &= \frac{1}{\overline{M}^2} \int dk_\perp^2 \left[\log \frac{\Omega_\phi}{\Omega_\Lambda} + \frac{\overline{\Lambda}^2 (11 \, \Omega_\Lambda^2 - 7 \, \Omega_\Lambda \Omega_\phi + 2 \, \Omega_\phi^2)}{6\Omega_\Lambda^3} \right] \delta(y), \end{split}$$

nonlocal δ -function contribution

$$\begin{split} \delta f_B^{(\delta)}(y) &= -\frac{\overline{\Lambda}^8}{\overline{M}^2} \int dk_\perp^2 \int_0^1 dz \, \frac{z^4}{(k_\perp^2 + \Omega)^4} \, \delta(y) \\ &= \frac{1}{\overline{M}^2} \int dk_\perp^2 \left[-4 \frac{\Omega_\phi}{\overline{\Lambda}^2} \log \frac{\Omega_\phi}{\Omega_\Lambda} - \frac{3\Omega_\Lambda^3 + 13\Omega_\Lambda^2 \Omega_\phi - 5\Omega_\Lambda \Omega_\phi^2 + \Omega_\phi^3}{3\Omega_\Lambda^3} \right] \, \delta(y) \end{split}$$

$$\Omega_\phi \ = \ k_\perp^2 + m_\phi^2 \ , \qquad \quad \Omega_\Lambda \ = \ k_\perp^2 + \Lambda^2 . \label{eq:Omega_def}$$

 \blacksquare e.g. meson rainbow diagram

$$f_{\phi B}^{
m (rbw)}(y) = rac{C_{B\phi}^2 \overline{M}^2}{(4\pi f)^2} \Big[f_B^{
m (on)}(y) + f_B^{(\delta)}(y) - \delta f_B^{(\delta)}(y) \Big]$$

- o in $\Lambda o \infty$ limit, $f_B^{(\mathrm{on})}$ and $f_B^{(\delta)}$ approach local limits; purely nonlocal function $\delta f_B^{(\delta)}$ vanishes
- similarly for all other diagrams
 - \rightarrow additional complications for decuplet diagrams, with end-point contributions at y=1

 \rightarrow N on-shell contribution still \approx total!

Outlook

■ The future of chiral loops is "fuzzy"...