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A common and natural explanation for flavor asymmetries
in the nucleon (       ,        , …) is a meson “cloud”s� s̄
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(d̄u)Most efforts have been within low-energy
models of QCD

relatively successful phenomenology,
but connection with QCD often unclear

Rigorous connection with QCD established via chiral EFT
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At leading order, pion-nucleon 
interaction includes pion rainbow,
Kroll-Ruderman (needed for gauge 
invariance), and tadpole diagrams 
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Matching of quark-level and
hadron-level operators with
same symmetries

yields convolution 
representation for PDFs

hadronic splitting
functions

PDF in loop
hadron
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q(x) = Z2 q0(x) + ([fN + ftad]⌦ q0) (x)

(depends on N helicity PDF)

+ ([f⇡ + fbub]⌦ q⇡(x) + (fKR ⌦�q0)(x)

More specifically, contributions to quark PDF from
different diagrams can be organized as:
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Splitting functions for pion rainbow diagram
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Pion rainbow diagram with nucleon coupling

Tadpole contribution also only at    = 0y
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For point-like nucleons and pions, integrals divergent

finite size of nucleon provides natural regularization scale
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Integrated asymmetry
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coefficients of leading nonanalytic (LNA) terms,
reflecting infrared behavior,  are model-independent!

Thomas, WM, Steffens (2000)

Detmold et al. (2001)

Effect on moments of PDFs

QCD therefore predicts a nonzero asymmetry from     loops⇡

m2
⇡(GeV2)

Extraction of parton distributions from lattice QCD 5
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Fig. 1. Moments of the unpolarized u − d distribution in the proton, for n = 1, 2 and 3. Lattice
data10 include both quenched (solid symbols) and unquenched (open symbols) results. The solid
line represents the full chiral extrapolation, while the inner (darkly shaded) error band shows
variation of µ by ± 20%, with the outer band (lightly shaded) showing the additional effects of
shifting the lattice data within the extent of their error bars. Linear extrapolations are indicated
by dashed lines, and the phenomenological values20 are shown as large stars at the physical pion
mass.

bn is simply bnm2
π) and bn is a third fitting parameter,7 are indistinguishable from

those in Fig. 1.
Note that the majority of the data points (filled symbols) are obtained from

simulations employing the quenched approximation (in which background quark
loops are neglected) whereas Eq. (4) is based on full QCD with quark loop effects
included. On the other hand, recent calculations with dynamical quarks suggest that
at the relatively large pion masses (mπ > 0.5–0.6 GeV) where the full simulations
are currently performed, the effects of quark loops are largely suppressed, as the data
in Fig. 1 (small open symbols) indicate. Further details of the lattice data,2,3,4,5

and a more extensive discussion of the fit parameters, can be found elsewhere.10

A similar analysis leads to analogous lowest order LNA parameterizations of the
mass dependence of the spin-dependent moments17
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Fig. 1. Moments of the unpolarized u − d distribution in the proton, for n = 1, 2 and 3. Lattice
data10 include both quenched (solid symbols) and unquenched (open symbols) results. The solid
line represents the full chiral extrapolation, while the inner (darkly shaded) error band shows
variation of µ by ± 20%, with the outer band (lightly shaded) showing the additional effects of
shifting the lattice data within the extent of their error bars. Linear extrapolations are indicated
by dashed lines, and the phenomenological values20 are shown as large stars at the physical pion
mass.

bn is simply bnm2
π) and bn is a third fitting parameter,7 are indistinguishable from

those in Fig. 1.
Note that the majority of the data points (filled symbols) are obtained from

simulations employing the quenched approximation (in which background quark
loops are neglected) whereas Eq. (4) is based on full QCD with quark loop effects
included. On the other hand, recent calculations with dynamical quarks suggest that
at the relatively large pion masses (mπ > 0.5–0.6 GeV) where the full simulations
are currently performed, the effects of quark loops are largely suppressed, as the data
in Fig. 1 (small open symbols) indicate. Further details of the lattice data,2,3,4,5

and a more extensive discussion of the fit parameters, can be found elsewhere.10

A similar analysis leads to analogous lowest order LNA parameterizations of the
mass dependence of the spin-dependent moments17
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Strange quarks
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Chiral SU(3) effective theory analysis suggests natural mechanism
for generating strange asymmetry
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Breakdown into individual contributions to s(x) 
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sðxÞ ¼ ðsðonÞ þ sðoffÞ þ sðδÞÞrbw þ sðδÞtad þ ðsðoffÞ þ sðδÞÞKR
¼ sðonÞrbw|{z}

on‐shell

þ sðoffÞrbw þ sðoffÞKR|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
off‐shell

þ sðδÞrbw þ sðδÞtad þ sðδÞKR|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
δ-function

; ð93Þ

s̄ðxÞ ¼ ðs̄ðonÞ þ s̄ðδÞÞrbw þ s̄ðδÞbub

¼ s̄ðonÞrbw|{z}
on‐shell

þ s̄ðδÞrbw þ s̄ðδÞbub|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
δ-function

; ð94Þ

where we have suppressed the x dependence in each of the
terms on the right-hand side. For the best fit parameters
ðμ1; μ2Þ ¼ ð545; 600Þ MeV (top panels in Fig. 6), the KR
diagrams in Figs. 1(e)–1(f) give the largest overall con-
tribution to sðxÞ, with the rainbow and tadpole contribu-
tions relatively small. Closer inspection of the various
diagrams shows large cancellations between the off-shell
terms in the rainbow and KR diagrams and between the
δ-function terms arising from the rainbow, KR, and tadpole
diagrams. The net effect is that the total s-quark distribution
is well approximated by the on-shell part of the rainbow
diagram, with the total off-shell and δ-function terms being
relatively small. This illustrates the vital role played by the
tadpole and KR diagrams, which are needed in a consistent
theory along with the rainbow contributions. It also
explains the phenomenological success of earlier calcula-
tions of meson loop corrections to PDFs in terms of on-
shell rainbow contributions only.
For the alternative fit parameters from Sec. VI, namely

ðμ1; μ2Þ ¼ ð526; 894Þ MeV (bottom panels in Fig. 6), the
magnitude of the total strange-quark PDF is slightly
smaller, and the cancellations between the various off-shell
and δ-function terms are not as dramatic. Nevertheless,
even though the on-shell part of the rainbow diagram does
not saturate the total contribution as completely, a similar
qualitative behavior is observed here also.
More quantitatively, the contributions of the various

terms to the moments of the s and s̄ PDFs are listed in

Tables I and II for the Sð0Þ, S̄ð0Þ and Sð1Þ, S̄ð1Þ moments,
respectively. For the lowest (n ¼ 1) moments, the off-shell
parts of the rainbow and KR contributions to Sð0Þ in fact
cancel exactly, leaving the on-shell component as the
dominant term and the remaining contributions distributed
among the δ-function pieces. Strangeness conservation
requires the on-shell contribution to S̄ð0Þ to be identical
to that for Sð0Þ, with equivalent contributions from the
tadpole and bubble diagrams to the strange and antistrange
moments, respectively.
For the second (n ¼ 2) moments in Table II, similarly

large cancellations are observed between the off-shell
contributions to the Sð1Þ moment from the rainbow and
KR diagrams. Cancellations also occur between the pos-
itive δ-function parts of the rainbow and tadpole diagrams
with the negative δ-function component of the KR dia-
grams. In contrast, because of the additional power of x in
the n ¼ 2 moment definition, only the on-shell part of the
rainbow diagram contributes to the s̄ moment. The net
effect is thus a positive difference S− ≡ Sð1Þ − S̄ð1Þ. Note
that, while for the larger μ1 cutoff value both the Sð1Þ and
S̄ð1Þ moments are bigger, the difference S− ¼ 0.42 × 10−3

for μ1 ¼ 545 MeV at Q2 ¼ 1 GeV2 is smaller than for the
lower cutoff μ1 ¼ 526 MeV, for which S− ¼ 1.12 × 10−3,
as is also apparent in Fig. 7. Here, both the sum xðsþ s̄Þ
and difference xðs − s̄Þ are illustrated at Q2 ¼ 1 GeV2 for
both sets of cutoff values. To display the sum and difference
on the same plot, we scale the much larger xðsþ s̄Þ
distribution by a factor 1=4.
For the best fit parameters ðμ1; μ2Þ ¼ ð545; 600Þ MeV,

the xðs − s̄Þ distribution peaks at around x ≈ 0.1 and has a
zero crossing at x ≈ 0.45, resulting in some cancellation of
the positive distribution at low x and negative distribution at
large x. Interestingly, for the ðμ1; μ2Þ ¼ ð526; 894Þ MeV
cutoff values, the asymmetry stays positive for all values of
x, with no zero crossing evident at x > 0. While this would
not have been possible in previous kaon loop calculations

TABLE I. Individual contributions to the first (n ¼ 1) moments
Sð0Þ and S̄ð0Þ of the s and s̄ PDFs from the diagrams in Fig. 1 at
Q2 ¼ 1 GeV2 for the two extreme cases considered, ðμ1; μ2Þ ¼
ð545; 600Þ MeV and (526, 894) MeV. The moments are given in
units of 10−2.

(545, 600) MeV (526, 894) MeV

ðμ1; μ2Þ Sð0Þ Sð0Þ Sð0Þ Sð0Þ

rbw (on) 4.91 4.91 2.97 2.97
rbw (off) −4.86 % % % −2.93 % % %
rbw (δ) 0.20 −0.20 0.47 −0.47
tad (δ) 0.59 % % % 1.36 % % %
bub (δ) % % % 0.59 % % % 1.36
KR (off) 4.86 % % % 2.93 % % %
KR (δ) −0.40 % % % −0.94 % % %
Total 5.30 5.30 3.86 3.86

TABLE II. Contributions to the second (n ¼ 2) moments Sð1Þ

and Sð1Þ of the s and s PDFs from kaon loops atQ2 ¼ 1 GeV2 for
the two extreme cases considered, ðμ1; μ2Þ ¼ ð545; 600Þ MeV
and (526, 894) MeV. The moments are given in units of 10−3.

(545, 600) MeV (526, 894) MeV

ðμ1; μ2Þ Sð1Þ Sð1Þ Sð1Þ Sð1Þ

rbw (on) 4.67 5.68 2.83 3.41
rbw (off) −5.41 % % % −3.28 % % %
rbw (δ) 0.34 0 0.79 0
tad (δ) 0.95 % % % 2.21 % % %
bub (δ) % % % 0 % % % 0
KR (off) 6.35 % % % 3.85 % % %
KR (δ) −0.81 % % % −1.87 % % %
Total 6.10 5.68 4.53 3.41

STRANGE QUARK ASYMMETRY IN THE PROTON IN … PHYSICAL REVIEW D 94, 094035 (2016)

094035-19



Breakdown into individual contributions to s(x) 
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explains phenomenological success of loop calculations
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presence of   -function terms in        means that
integrals of    and    at x > 0 need not cancel!

� s̄(x)
s s̄



UV divergent … need to suppress large-k contributions

Regularization

For point particles, regulator functions     for on-shell,
off-shell and   -function distributions (which could be different!)
are unity

F
�

Not all regularization schemes preserve symmetries of the 
field theory (Lorentz invariance, gauge invariance, chiral symmetry)

dimensional regularization, Pauli-Villars (example of finite-range 
regulator) known to preserve chiral and Lorentz symmetries

naive application of (some) hadronic form factors can lead
to problems with gauge invariance

A solution which allows preservation of symmetries with
form factors is to use nonlocal theory!



For interactions of finite-sized hadrons, it is natural to imagine
interactions would not necessarily be at a single point, but
smeared out over spacetime

Nonlocal chiral EFT

generalize local chiral SU(3) Lagrangian …

e.m. field

meson fieldscovariant derivatives

decuplet baryon fields

octet baryon fields

T ijk
µ = �,⌃⇤,⌅⇤,⌦



For interactions of finite-sized hadrons, it is natural to imagine
interactions would not necessarily be at a single point, but
smeared out over spacetime

Nonlocal chiral EFT

… to nonlocal Lagrangian

gauge link preserves local gauge invariance of fields

coordinate space meson-baryon vertex form factor         in LagrangianF (a)



Expand gauge link to lowest order

allows nonlocal Lagrangian to be written as sum of free
and interacting parts, with latter consisting of nonlocal
purely hadronic, electromagnetic (from 1st term), and
gauge-link parts (from 2nd term)



Gauge link part of Lagrangian generates additional interactions
specific to the nonlocal theory

there are also nonlocal contributions to all the other diagrams!

illustrate for case of a (k  -dependent) dipole form factor2



e.g. meson rainbow diagram

on-shell term

-function term�

nonlocal   -function
contribution
�



e.g. meson rainbow diagram

in             limit,          and        approach local limits;⇤ ! 1 f (�)
Bf (on)

B

�f (�)
Bpurely nonlocal function         vanishes

similarly for all other diagrams

additional complications for decuplet diagrams,
with end-point contributions at y = 1



Numerical effects of nonlocality
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Numerical results of PDFs  

     Contribution from octet intermediate states is more important than that from decuplet intermediate states. 

          The sum of the on-shell contribution is close to the total result.

 23

dbar — ubar asymmetry:

Numerical effects of nonlocalityNumerical effects of nonlocality

N on-shell contribution still     total!⇡



Outlook

The future of chiral loops is “fuzzy”…


