This work is supported by DOE grant DE-FG02-94ER4084

3D Imaging, Mass and Spin: What can we learn from heavy meson production?

Sylvester Joosten

sylvester.joosten@temple.edu

TEMPLE UNIVERSITY® 2018 EIC User Group Meeting, CUA, July 2018

Quarkonium in electro- and photo-production

- Strong gluonic interaction
 between color neutral
 objects
- Minimal quark exchange
- Quarkonium as a probe to study the gluonic
 structure of the nucleon

Quarkonium photo-production: what do we know?

J/ψ photo-production:

Direct photo-production

Cornell '75, SLAC '75, CERN NA-14, FNAL E401, E687

- Electro-production (quasi-real)
 H1 and ZEUS
- Ultra-peripheral pp collisions
 LHCb '14

Y(1s) photo-production:

- Electro-production (quasi-real)
 H1 and ZEUS
- Ultra-peripheral pp collisions
 LHCb '15

Quarkonium photo-production: what do we know?

J/ψ photo-production:

- Well constrained above W > 15 GeV
 - Dominated by t-channel 2-gluon exchange
- Almost no data near threshold

Y(1s) photo-production:

- Not much available
 - ZEUS measured 62 ± 12 events total!

Why the threshold region?

Near Threshold:

- Origin of proton mass, trace anomaly of the QCD energymomentum tensor.
- Gluonic Van der Waals force,
 possible quarkonium-nucleon/
 nucleus bound states
- Mechanism for quarkonium production

J/ψ program at Jefferson Lab
 Y(1s) production at an EIC

Why electro-production at high energies?

High Energies

- Access Gluon GPD: Full 3D tomography of the gluonic structure of the nucleon
- L-T separation and the Q²
 dependence of *R* for
 quarkonium production

Quarkonium production near threshold

Production mechanism near threshold unknown

- Same as high energies (2-gluon)?
- Maybe 3-gluon exchange dominant?
- Orders of magnitude difference
- * **2-gluon** fastest drop-off
 - Drives required luminosity for threshold measurement

Frankfurt and Strikman., PRD66 (2002), 031502

Or a partonic soft mechanism
 (power law 2-gluon form-factor)?

2-gluon fit near threshold

- * Smallest cross section drives required precision and luminosity
 - Use 2-gluon estimate for experimental projections near threshold

Quarkonium-nucleon scattering amplitude

- VMD relates photo-production cross section to quarkonium-nucleon scattering amplitude T_{ψp}
 - Approach works well at high energies, constrains $Im(T_{\psi p})$
 - Need $Re(T_{\psi p})$ to describe threshold region (calculated through dispersion relations)
 - ***** Re($T_{\psi p}$) dominates near threshold
 - Constrained through dispersion relations, not data.

D. Kharzeev, Proc.Int.Sch.Phys.Fermi 130 (1996) 105-131 D. Kharzeev *et al.*, EPJ-C9 (1999) 459-462

Quarkonium-nucleon scattering amplitude

- $K_{eep} in MARNING I$ Keep in ARNING IKeep in ARNING ISector in Mind ABELSector to quarkonium-nucleoi ation theorem (Netriconsection to quarkonium-nucleoi ation theor* $\operatorname{Re}(T_{\psi p})$ through dispersion relations O. Gryniuk and M. Vanderhaeghen, Phys. Rev. D 94, 074001 (2016)
 - $Re(T_{\psi p})$ dominates near threshold
 - Constrained through dispersion relations, not data.

 γ, γ^*

The proton mass is an emergent phenomenon

M. S. Bhagwat *et al.*, Phys. Rev. C 68, 015203 (2003) I. C. Cloet *et al.*, Prog. Part. Nucl. Phys. 77, 1-69 (2014)

Constituent quark mass from DSE and Lattice

- Low momentum gluons attach to the current quark (DCSB)
- Gluon field accumulates
 ~300MeV/constituent quark
- Even in the chiral limit (mass from nothing)!

The Higgs mechanism is largely irrelevant in "normal" matter!

The proton mass: covariant decomposition

D. Kharzeev, Proc.Int.Sch.Phys.Fermi 130 (1996) 105-131

Access nucleon mass through trace of energymomentum tensor (EMT) at zero momentum transfer

$$\langle P|T^{\mu}_{\mu}|P\rangle = 2P^{\mu}P_{\mu} = 2M_{p}^{2}$$

At low momentum transfer: heavy quarks decouple

Trace Anomaly Light Quark Mass

Trace anomaly term dominant: 355-359 "Proton mass result of the vacuum polarization induced by the presence of the proton." Lattice UUU ★ Possible to evaluate <*G*²> directly

The proton mass: rest-frame decomposition

X. Ji, PRL 74, 1071 (1995) & PRD 52, 271 (1995)

The proton mass ... a hot topic!

"... The vast majority of the nucleon's mass is due to quantum fluctuations of quark- antiquark pairs, the gluons, and the energy associated with quarks moving around at close to the speed of light.

(The 2015 Long Range Plan for Nuclear Science)

Installed B Treets ("Dief"), wavesider (1.8 a 201; painted by A. Director its way hash from Vester (1994). He had Mauran, London

The Proton Mass: At the Heart of Most Visible Matter

Tremo, April 3 - 7, 2017

 Main Topics

 Tacheen mass decomposition is terms of constituents:

 Unipresent of the decomposition, Quark man, and quark and given mengy one tilestory, decomply anticipation, ...

 Balance mass checksiones

 antice QCE (well & individual mass composentity)

 Experimental access is balance mass composentity

 Experimental access is balance mass composentity

 Experimental access is balance mass composentity

Confirmed speakers and participants

Associated viscolaria - Copies Conversity, Statisty Chai, Section F. Mithan, Serv. works: State Conversity, Line Land Hung, Organiza Landon, Line Land Hung, Copies Andrea, Line Land Hung, Line Hun

Organizers Sain-Eddie Medical (Single University Balwer Presided (Delwerts of Perda) Janwei Qie (Sefferen Late Mar Verderbarden (Diesersteit Anter

Director of the BCT*: Inclusor Jacken Wantach (ECT*)

The BOTP is sponsored by the "Fondations Branck Reselut" is collaboration with the "Assessments allo Column" (Provinsia Astessma & Trutte), Insuling agreement (FD Mondarmal Reconstruct Status and Insuling agreement of Physics of The Debending of Territe

Ioral organization gluone context. Giummain Eggio - DCT* Secretariat - Wile Taulouit - Steade dally Educedle 286 - 16123 Villacano (Terrete) - Edg Tel. (1926-0621) 314721 Parci - 29-04621 314730, B-mill: ext(Berletarov or right http://www.estatur.eu

JLab will play a leading role: Access trace anomaly through elastic J/ψ production near threshold

Binding energy of the J/ψ - nucleon potential

- Color neutral objects:
 gluonic Van der Waals force
 - At threshold, spin-averaged scattering amplitude related to swave scattering length a_{ψp}

 $T_{\psi p} = 8\pi (M + M_{\psi}) a_{\psi p}$

- * Binding $B_{\psi p}$ can be derived from $a_{\psi p}$
 - ★ Estimates between 0.05-0.30 fm, corresponding to $B_{\psi p}$ < 20 MeV</p>
 - LQCD: B_{ψp} < 40 MeV
 S. R. Beane *et al.*, Phys. Rev. D 91, 114503 (2015)
 - Recent fit to existing data in a dispersive framework:
 - $\Rightarrow a_{\psi p} \sim 0.05 \, \text{fm} \, (B_{\psi p} \sim 3 \, \text{MeV})$

O. Gryniuk and M. Vanderhaeghen, Phys. Rev. D 94, 074001 (2016)

- Photo-production near threshold constrained through dispersion relations, not data
- * Threshold experiments needed!

B-H asymmetry: access scattering length a_{ψp}

- * Interference between elastic J/ψ production near threshold and Bethe-Heitler
- * Forward-backward asymmetry near the J/ψ invariant mass peak
- * Sensitive to real part of the scattering amplitude, hence $a_{\psi p}$ and $B_{\psi p}$

charmed "pentaquark" in photo-production

- Possible explanations for LHCb observations:
 - LHCb: 2 new charmed "pentaquark" (P_c) states
 - alternative: kinematic enhancements through anomalous triangle singularity (ATS)

Lui X-H, et al., PLB 757 (2016), p231 (and references therein)

- Photo-production ideal tool to distinguish between both explanations
 - ☆ if P_c real states, also created in photo-production
 - kinematic enhancement through ATS not possible (and references therein)
- $P_c(4450)$ translates to **narrow peak around E_{\gamma} = 10 \text{ GeV}**

JLab perfect place for this measurement!

J/ψ at JLab in the 12GeV era

JLab is the ideal laboratory to measure J/ψ near threshold, due to luminosity, resolution and energy reach!

J/ψ in Hall D/**GlueX**

II (Billion)

First J/ ψ at JLab! Expected daily yield: ~5-10 J/ ψ

J/w experiment E12-12-001 in Hall B/CLAS12

 First data taken with run-group A this Spring!

 Expected daily yield: ~45 J/ψ for 130 days

Pentaguark search E12-16-007 in Hall C

- 50µA electron beam at 10.6 GeV for **11 days**
- 9% copper radiator
- 15cm liquid hydrogen target
- total 10% RL
- Detect J/ψ decay leptons in coincidence $\stackrel{\frown}{\simeq}$
 - Bremsstrahlung photon energy fully constrained

High-impact experiment ...will run February 2019!

Resonant J/\psi production through P_c decay

- * Cross section depends on **coupling of** P_c to $(J/\psi, p)$ channel
- J/ψ angular distribution differs between
 t-channel and s(u)-channel

Leverage angular dependence to maximize sensitivity at low coupling!

- 2 settings:
 - ☆ "SIGNAL" (#1) to maximize S/B
 - * "**BACKGROUND**" (#2) to precisely determine *t*-channel J/ψ cross section

Projected results for Pc search in Hall C

- 2+9 days of beam time at 50μ A
- 5/2+ peak dominates the spectrum
 - 26x reduction in t-channel background rate
- Background measurement will provide
 first-hand information about t-channel
 production near threshold

J/w experiment E12-12-006 at SoLID

ATHENNA Collaboration

- 3µA electron beam at 11 GeV for
 50 days
- 11 GeV beam 15cm liquid
 hydrogen target
- Ultra-high luminosity (43.2 ab⁻¹)
- General purpose large acceptance spectrometer
- Symmetric acceptance for electrons and positrons

$\gamma/\gamma^* + N \to N + J/\psi$

- Electro-production
- Real photo-production through bremsstrahlung in the target cell

J/w experiment E12-12-006 at SoLID

ATHENNA Collaboration

- **Photo-production**
 - 2-fold coincidence + recoil proton 9
 - *t*-channel J/ ψ rate: **1627 per day** 9
 - Advantage over electro-production $\frac{10^{-1}}{5}$
 - Energy reach in charmed 9 pentaquark region
 - High rate 9

Electro-production

- **3-fold** coincidence (3 leptons)

Sensitivity below 10⁻³ nb !

J/ψ experiments at JLab in a nutshell

	GlueX HALL D	HMS+SHMS HALL C	CLAS 12 HALL B	SoLID HALL A
J/ψ Rate (photo-prod.)	5-10/day	#1: 13/day #2: 341/day	45/day	1627/day
J/ψ Rate (electro-prod.)				86/day
Experiment		E12-16-007	E12-12-001	E12-12-006
PAC days		9+2	130	50
When?	Ongoing	Early 2019	Ongoing	~10 years?

Exciting times for near-threshold J/ψ production!

Y photo-production at an EIC

quarkonium production at high energies

Deeply-virtual quarkonium production and the gluon GPD

Hard scale: $Q^2 + M_V^2$ Modified Bjorken-x: $x_V = \frac{Q^2 + M_V^2}{2p \cdot q}$

average unpolarized gluon GPD related to t-dependent cross section (LO)

$$|\langle \mathcal{H}_g \rangle|(t) \propto \sqrt{\frac{d\sigma}{dt}(t)/\frac{d\sigma}{dt}(t=0)}$$

 Fourier transform: transverse gluonic profile

$$\rho(|\vec{b}_T|, x_V) = \int \frac{d^2 \vec{\Delta}_T}{(2\pi)^2} e^{i \vec{\Delta}_T \vec{b}_T} |\langle H_g \rangle | (t = -\vec{\Delta}_T^2)$$

* Remarks:

- Simplest possible GPD extraction
- Intrinsic systematic uncertainty due to **extrapolation** outside of measured *t*-range
- NLO effects could be significant
 - * Corrections expected to be smaller for Y(1s) than for J/ψ

Gluon tomography with J/ψ

Gluon tomography with Y(1s)

Conclusion

- Quarkonium production an important tool to study the gluonic fields in the nucleon
- Threshold production of quarkonium can shed light on the trace anomaly, quarkonium-nucleon binding and proton mass
- Possible to study "charming" (and "beautiful"?) pentaquarks
- At high energies: possible to access gluon GPDs
- Can test universality by comparing Y to J/ψ results
- JLab12 and the EIC are (will be) perfectly positioned to significantly contribute to these topics

This work is supported by DOE grant DE-FG02-94ER4084

BACKUP SLIDES

Accelerator and detector parameters

- Nominal parameters relevant to quarkonium production:
 - (Consistent with accelerator/detector specs from white-paper for J/ψ production)
 - 10 GeV electrons on 100 GeV protons: in range of both designs
 - Luminosity: 100 fb⁻¹ (116 days @ 10³⁴ cm⁻²s⁻¹)
 - Acceptance:
 - **Leptons**: pseudo-rapidity $|\eta| < 5$
 - Recoil proton: scattering angle
 - θ > 2 mrads
 - Resolution:
 - Angular < 0.5 mrad</p>
 - Momentum < 1%</p>

 $\frac{d\sigma}{dQ^2 dy dt} = \Gamma_T (1 + \epsilon R) D$

$$R = \left(\frac{AM_V^2 + Q^2}{AM_V^2}\right)^{n_1} - 1$$

$$D = \left(\frac{M_V^2}{M_V^2 + Q^2}\right)^{n_2}$$

- Martynov, et. al., "Photoproduction of Vector Mesons in the Soft Dipole Pomeron Model." PRD 67 (7), 2003. doi:10.1103/ PhysRevD.67.074023
- R. Fiore et al., "Exclusive Jpsi electroproduction in a dual model." PRD80:116001, 2009"
- A. Airapetian et al, "Exclusive Leptoproduction of rho0 Mesons on Hydrogen at Intermediate W Values", EPJ C 17 (2000) 389-398
- Adams et al., "Diffractive production of p0 mesons in muonproton interactions 470 GeV", ZPC74 (1997) 237-261.
- M Tytgat, "Diffractive production of ρ0 and ω vector mesons at HERMES" DESY-Thesis 2001-018 (2001)
- P. Liebing, "Can the Gluon Polarization be Extracted From HERMES Data", DESY-Thesis (2004)

Brodsky, S J, E Chudakov, P Hoyer, and J M Laget. 2001. "Photoproduction of Charm Near Threshold." Physics Letters B 498 (1-2): 23–28. doi:10.1016/S0370-2693(00)01373-3.

Angular dependence of the decay lepton pair in the J/psi Helicity frame

$$\mathcal{W}(\cos\theta_{\rm CM}) = \frac{3}{8} \left(1 + r_{00}^{04} + (1 - 3r_{00}^{04})\cos^2\theta_{\rm CM} \right)$$
$$R = \frac{1}{\epsilon} \frac{r_{00}^{04}}{1 - r_{00}^{04}}$$

- J. Breitweg et al. (ZEUS), Exclusive electro-production of rho0 and J/psi mesons at HERA, EPJ-C 6-4 (1999)
- Chekanov et al. (ZEUS), Exclusive photo production of J/psi mesons at HERA (2002)
- K. Schilling et. Al, Nucl. Phys. B 61, 381 (1973)

Photon Energy Reconstruction

- Can **unambiguously** reconstruct the initial photon energy from the reconstructed J/ψ momentum and energy
- Assumptions:
 - photon beam along the z-axis
 - proton target at rest
 - 2 final state particles: a proton and a J/ψ

$$E_{\gamma} = \frac{M_J^2 - 2E_J M_P}{2(E_J - M_p - P_J \cos \theta)}$$

L-T separation and the Q² dependence of R

s-channel helicity conservation (SCHC):

- $\int J/\psi$ takes on (virtual) photon polarization
- Angular distribution of the decay pair

$$\mathcal{W}(\cos\theta_{\rm CM}) = \frac{3}{8} \left(1 + r_{00}^{04} + (1 - 3r_{00}^{04})\cos^2\theta_{\rm CM} \right)$$

• Can extract **R** in 3D (Q^2 , x_V , t)

$$R \equiv \frac{\sigma_L}{\sigma_T} = \frac{1}{\epsilon} \frac{r_{00}^{04}}{1 - r_{00}^{04}}$$

