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the electromagnetic form factor [75], the PDF [76] and
the 3D imaging [62], have confirmed its reliability and
encouraged to broad the scope of our investigation.
It should be pointed out that (it will become clear in
what follows) the evaluation of quantities that depend
not only upon the longitudinal dof but also the trans-
verse ones leads to sharply increase the sensitivity to
the dynamical content of a given phenomenological
description of the pion, namely to increase its predic-
tive power. Furthermore, the joint use of the Fock
expansion, meaningful in the Minkowski space, allows
one to resolve the gluonic content of the pion state.

The paper outline is as follows. In Sect. II, the gen-
eral formalism and the notations are introduced, high-
lighting the ingredients of our dynamical approach,
namely i) the Bethe-Salpeter amplitude, solution of
the 4D homogeneous Bethe-Salpeter equation, and
ii) the Nakanishi integral representation of the BS-
amplitude. In Sect. III, the expressions of leading-
and subleading-twist uTMDs are given in terms of
the Bethe-Salpeter amplitude of the pion. In Sec. IV
and V, the leading and subleading-twist uTMDs are
shown and compared with outcomes from other ap-
proaches. Finally, in Sect. IV, the conclusions are
drawn, and the perspectives of our approach are pre-
sented.

II. GENERALITIES

For a pion with four-momentum P ⌘ {P�, P+,P?}
(where P 2 = P+P�

� |P?|
2 = M2 and the LF co-

ordinates are a± = a0 ± a3), and by adopting both
i) a frame where P? = 0 and ii) the light-cone gauge
A+

g
= 0, the quark leading-twist uTMD, fq

1 (�, ⇠), is
defined as follows (for a general introduction see, e.g.,
Ref. [1, 6])

fq
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where Nc is the number of colors,  q is the fermionic
field, and the quark four-momentum is given in terms
of LF coordinate by pq ⌘ {p�

q
, ⇠P+,k? + P?/2},

with � = |k?|
2. The antiquark uTMD is obtained

by using the proper four-momentum pq̄ ⌘ {p�q̄ , (1 �

⇠)P+,�k? + P?/2}, recalling that P = pq + pq̄ and
k = (pq � pq̄)/2.

The normalization of fq

1 (�, ⇠) is given by
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where F q

⇡
(t) is the quark contribution to the elec-

tromagnetic (em) form factor of the pion. The lat-
ter results to be equal to F⇡(t) = eqF q

⇡
(t) + eq̄F q̄

⇡
(t),

with t = (P 0
� P )2, and is related to the matrix ele-

ment of the four-current by Nc hP | ̄q(0)�µ q(0)|P i =
2Pµ F⇡(t = 0). Finally, it should be pointed that in-
serting a complete basis in Eq. (1) and exploiting
the good and bad components of the fermionic field
one can easily demonstrate that fq

1 (�, ⇠) � 0 (see Ref.
[77]).

In order to describe the pion by taking into ac-
count at some extent the QCD dynamics in the non-
perturbative regime, it is useful to resort to the Man-
delstam framework [78], where the interacting quark-
pion vertex is expressed in terms of the (reduced) BS-
amplitude, i.e. the solution of the 4D homogeneous
BSE, and defined by

�(k, P ) =

Z
d4x eik·x h0|T

�
 (x2 )  ̄(�

x

2 )
 
|P i , (3)

where the fermionc field fulfills the Poincaré trans-
lation  (x) = eiP̂ ·x (0)e�iP̂ ·x (recall that only the
component P̂� is interacting in the LF dynamics, see,
e.g., Ref. [79]).

Thus, by using the Feynman-like diagrammatic pic-
ture inherent to the Mandelstam framework (see, e.g.,
Ref. [75] for the application to the em form factor),
one can write the following expression for fq

1 (�, ⇠)
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where

pq(q̄) = ± k +
P

2
. (5)

For the sake of completeness, let us write the BSE in
ladder approximation, i.e. the one we are adopting for
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tal for investigating the dynamical chiral-symmetry
breaking) and a quark-antiquark bound system (i.e.
the simplest bound system in QCD). This very pe-
culiar feature has attracted many phenomenological
e↵orts, so that the uTMDPDFs have been evaluated
within several frameworks, e.g., i) the pion constituent
models [20, 21]; ii) the Nambu-Jona-Lasinio model
with Pauli-Villars regularization[22], or proper time
one [23]; iii) the light-front holographic model [24, 25],
iv) the Dyson-Scwhinger equations in Euclidean space
[26].
In this paper, we present the first evaluation of the

twist-2, twist-3 and twist-4 uTMDPDFs within a dy-
namical framework in Minkowski space, where the ho-
mogeneous Bethe-Salpeter equation (BSE) for a qq̄
pair has been solved with an interaction kernel based
on the exchange of a massive gluon. Since the BSE is
an integral equation, one can address the nonpertur-
bative generation of a bound state from the needed
infinite exchange of the intermediate vector boson,
and hence investigate its peculiar dynamical features.
Indeed, in spirit, our approach is similar to the one
developed in Ref. [26] for evaluating the leading-
twist uTMDPDF, where it was also taken into ac-
count the gap-equation of the quark propagator and
a confining interaction, but in Euclidean space. In
this case, one resorts to a suitable method (based on
the moments and a parametrization of the Euclidean
BS amplitude) to get the Minkowski-space distribu-
tion function. A basic ingredient of our approach for
solving the BSE is the Nakanishi integral representa-
tion (NIR) of the Bethe-Salpeter (BS) amplitude. It
has to be emphasized that such representation allows
one to successfully deal with the analytic structure
of the BS amplitude, obtaining an integral equation
formally equivalent to the initial BSE and more suit-

able for the numerical treatment. Many and relevant
applications of our approach to the pion, as the elec-
tromagnetic form factor [27], the PDF [28] and the 3D
imaging [29], have confirmed its reliability, and hence
encourage broadening the scope of our investigation.
It should be pointed out that (it will become clear in
what follows) the evaluation of quantities that depend
not only upon the longitudinal dof but also the trans-
verse ones leads to sharply increase the sensitivity to
the dynamical content of a given phenomenological de-
scription of the pion, namely to increase its predictive
power.

The outline the paper is as follows. In Sect. II,
the general formalism and the notations are intro-
duced, highlighting the ingredients of our dynamical
approach, namely i) the Bethe-Salpeter amplitude, so-
lution of the homogeneous Bethe-Salpeter equation,
and ii) the Nakanishi integral representation of the
BS amplitude. In Sect.III, the expressions of leading-
and subleading-twist uTMDPDFs are given in terms
of the Bethe-Salpeter amplitude of the pion. In Sec.
IV and V, the leading and subleading-twist uTMD-
PDFs are shown and compared with outcomes from
other approaches. Finally, in Sect. VI, the conclu-
sions are drawn, and the perspectives of our approach
are presented.

II. GENERALITIES

In a pion with four-momentum P ⌘ {P�, P+,P?}
(recall P 2 = M2), adopting the light-cone gauge
A+

g = 0 and a frame where P? = 0, the quark leading-
twist uTMDPDF, fq

1 (�, ⇠), is defined as follows (for a
general introduction see, e.g., Ref. [1])

fq
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where Nc is the number of colors,  q is the fermionic field, and the quark four-momentum is given in terms of
LF coordinate by pq ⌘ {p�q , ⇠P

+,k? +P?/2}, with � = |k?|
2. The antiquark uTMDPDF is obtained by using

the proper four-momentum pq̄ ⌘ {p�q̄ , (1 � ⇠)P+,�k? + P?/2}, with P = pq + pq̄ and k = (pq � pq̄)/2. The
normalization is given by
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where F q
⇡(t) is the quark contribution to the electromagnetic (em) form factor of the pion, that results to be

F⇡(t) = eqF q
⇡(t) + eq̄F q̄

⇡(t), with t = (P 0
� P )2.

T-even uTMD leading-twist from the quark-quark correlator
Mulders & Tangerman NPB461, 197 (1996)

12

0 2 4 6 8 10
γ/m2

10-4

10-3

10-2

10-1

100

101

D ⊥
(γ

)/D
⊥
(0

)

FIG. 2. Normalized pion transverse distribution func-
tion, Eq. (41), vs �/m2. The normalization is given by
D?(0) = 22.945 GeV�2. Thick solid line: full calcula-
tion. Dashed line: the same as the full line, but times
(�/m2)4. Dash-dotted line: the same as the full line,
but times (�/m2)2. Dash-double-dotted line: exponen-

tial form e��/(0.422), with the parameter from Table 1 of
Ref. [21], corresponding to a Gaussian Ansatz for f1(�, ⇠)
(see text).

the one obtained in Ref. [26], where the pion LF-wave
function is determined from a beyond rainbow-ladder
Dyson-Schwinger equations (DSE) Euclidean calcula-
tion, by exploiting the �-dependent moments in ⇠ and
a suitable parametrization of the BS amplitude.

In Fig. 4, the quantitative comparison at ⇠ = 0.5
with some phenomenological outcomes is presented.
As already mentioned for �/m2

! 0 (see the uper
panel with linear ordinates) there are remarkable dif-
ferences that, indeed, are present also on the tails (see
the lower panel with logarithmic ordinates). This last
feature impacts the value of h�/m2

i, as shown in Table
I (recall that m = 0.255 GeV).

TABLE I. The average value h�/m2i for i) fS
1 (�, ⇠ =

0.5) from the present approach (NIR+BSE); ii) the out-
come from the LF wave function obtained by using DSE
calculation[26] (LFDSE); iii) the LF constituent quark-
model of Ref. [20, 21] (LFCQM) are shown in the second
column. the NJM with Pauli-Villars regulator [22]. In
the third column, the values of i) uS(⇠ = 0.5) for our ap-
proach and ii) the ones corresponding to the model PDFs
are presented. In the last column, the pion charge radius
for each approach, recalling that rPDG

ch = 0.659±0.004[50]
is reported.

h�/m2i u(⇠ = 0.5) rch [fm]

NIR+BSE 1.56 1.60 0.663

LFDSE 3.77 1.36 0.590

LFCQM 2.71 1.37 0.670 ?

NJM 4.08 1.01 0.557

FIG. 3. Pion unpolarized transverse-momentum distribu-
tion f1(�, ⇠), Eq. (8), at the initial scale. The normaliza-
tion is

R 1

0
d⇠

R1
0

d� f1(�, ⇠) = 1.
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FIG. 5. (Color online) Left panel. Pion unpolarized collinear PDFs: i) eq(⇠) (solid line), Eq. (46), ii) eS(⇠) (dashed
line) and eAS(⇠) (dotted line), Eqs. (45). It is also shown eqEoM (⇠) (dash-dotted line), Eq. (47). Right panel. Quark
unpolarized collinear PDFs: ⇠ eq(⇠). Solid line: full calculation as in the left panel. Dashed line: m/M uq(⇠), with uq(⇠)
shown in the right panel of Fig. 1. Double-dot-dashed line: ⇠ eqEoM (⇠), Eq. (47).

with the quark and anti-quark contributions.
As introduction to the outcomes of our dynamical

approach, it is worth anticipating that the comparison
between full calculations and naive estimates one can
infer from Eq. (17) by using a valence approximation
of the leading-twist f1(�, ⇠), highlights the inspiring
statement one can read in Ref. [77]: the higher-twist
distributions are naturally related to multiparton dis-
tributions. The role of the exchanged gluons becomes
definitely clear through a remarkable shift of the peak
in all the sub-leading uTMD we have analyzed, as
already discussed in the previous Section, as well as
through the sharp di↵erence with the naive estimates,
which exclude the e↵ect of the one-gluon exchange.

A. Twist-3 uTMD: e(�, ⇠)

In the frame where P? = 0 and hence P+ = M , by
using Eq. (27), (B19), (B20), (B21) and (B22), with
i = 1 and the functions b1

n;`j given in Table VII, one

gets the twist-3 uTMDs eS(AS)(�, ⇠), decomposed as
follows

eS(AS)(�, ⇠) = E0(�, ⇠;S(AS)) + Ed(�, ⇠;S(AS))

+E2d(�, ⇠;S(AS)) + E3d(�, ⇠;S(AS)) , (44)

where the functions in the rhs are given in Ap-
pendix E.

1. Longitudinal degree of freedom

In the left panel of Fig. 5, the following collinear
PDFs are shown

e(S,AS)(⇠) =

Z 1

0
d� e(S,AS)(�, ⇠) . (45)

and

eq(⇠) = eS(⇠) + eAS(⇠) . (46)

Moreover, in the spirit of Ref. [35], we also present
the collinear PDF, eq

EoM
(⇠), obtained by integrating

the first line in Eq. (17), but disregarding the gluon
contribution, viz

eq
EoM

(⇠) ⇠
m

M⇠

Z 1

0
d� fq

1;EoM
(�, ⇠)

⇠
m

M⇠

uLF

val
(⇠)

Pval

, (47)

where uLF

val
(⇠)/Pval, normalized to 1 (cf. Eq. (33)),

approximates the integral of fq

1;EoM
(�, ⇠). The large

di↵erence between our eq(⇠) and (m/M⇠)uLF

val
(⇠)/Pval

indicates the sizable role of the gluon contribution
from the HFS generated by our dynamical model. In
addition, one should point out that the strength of
eq(⇠) is spread out on the whole range of ⇠, and not
concentrated at the end-point ⇠ = 0 as QCD investiga-
tions indicate. The latter feature leads to the singular

Subleading-twist 3 uTMDs
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FIG. 8. (Color online) Left panel. The same as in Fig. 5, but for f?q(⇠), f?S(⇠) and f?AS(⇠), Eq. (51), and f?q
EoM (⇠)

as given in Eq. (52). Right panel. Quark unpolarized collinear PDFs ⇠ fq?(⇠). Solid line: full calculation as in left panel.
Dashed line: ⇠ fq?(⇠) obtained by using the second line in Eq. (17) and our fq

1 (⇠). Double-dot-dashed line: the same as
the dashed line but using the valence approximation of the PDF, uLF

val(⇠), with norm equal to 1.
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FIG. 9. (Color online). Left panel. Normalized transverse distribution function P?(�)/P?(0) (cf. Eq. (53)). Dotted
line: full calculation. Solid line: D?(�)/D?(0) for the sake of comparison. Dash-double-dotted line: the same as in the
left panel of Fig. 3. Right panel. Pion unpolarized transverse-momentum distribution fS?(�, ⇠), Eq. (50), for ⇠ = 0.5.
Solid line: full calculation. Dashed line: by using f1(�, ⇠ = 0.5) in Fig. 3 from the LF constituent quark model of
Ref. [35, 56] (cf. the second line in Eq. (17), without the gluonic term). Dash-dotted line: the LF wave function from
DSE calculations [45]. Dash-Double-dotted line: the NJL model [38]. The adopted quark mass m = 255 MeV.

second line of Eq. (17), without the gluon term, as
follows

f?q

EoM
(⇠) ⇠

1

⇠

Z 1

0
d�f?q

EoM
(�, ⇠) ⇠

uLF

val
(⇠)

⇠
. (52)

For the sake of completeness, in the right panel of
Fig. 8, the product ⇠ fq?(⇠) is compared to fq

1 (⇠) and

uLF

val
(⇠) that represents the approximation to f?q

EoM
(⇠)

as given in Eq. (52). Also for fq?(⇠), the full calcu-
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nomenological models)
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Nc

2

Z
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dp+
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dp�
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�1

d4y

(2⇡)4
ei pq·y hP | ̄q(�

y

2 ) 1 q(
y

2 )|P i

= Nc

hP | ̄q(0) 1  q(0)|P i

2P+
, (13)

where the matrix element hP | ̄q(0) 1  q(0)|P i has to
be proportional to the pion sigma term, once a QCD
framework is adopted. As a matter of fact, one gets

Z 1

0
d⇠

Z 1

0
d� eq(�, ⇠) =

�⇡
mcur

(14)

where mcur is the quark current mass and �⇡ is
the pion sigma term, that becomes �⇡ = M/2, in
the leading order of the chiral expansion, i.e. the
Gell-Mann-Oakes-Renner relation [83]. It should be
pointed that recent LQCD calculations [84] confirm,
with high accuracy, the Gell-Mann-Oakes-Renner re-
lation in the range of the explored pion masses. In-
deed, the QCD equations of motion gives a decom-
position of the collinear PDF e(⇠) =

R
d� e(�, ⇠) in

three terms. Among them, there is a singular term
proportional to the pion sigma term, that reads (see,
e.g., Ref. [85])

esing(⇠) = �(⇠) hP | ̄q(0) 1  q(0)|P i/2P+ , (15)

while the other two terms, one is due to quark-
antiquark-gluon correlations and the other is propor-
tional to the quark mass, do not contribute to Eq. (14)
(see Ref. [85], where the issue is analyzed, taking
the nucleon as actual case). In our phenomenologi-
cal model the strength is distributed over the whole
range of ⇠ (as in Ref. [35]), without the singularity at
⇠ = 0, as it will be shown in Sect. V. Moreover, one
has for the first moment [85]

Z 1

0
d⇠

Z 1

0
d� ⇠ eq(�, ⇠) =

mcur

M
, (16)

where the singular term and the gluonic contribution
vanish, and only the term proportional to the quark
mass contributes.
From the equations of motion of a free-quark model,

one deduces the following relations between the above
uTMDs (see,e.g., Ref [35, 85, 86])

⇠ eq
EoM

(�, ⇠) = ⇠ ẽq(�, ⇠) +
m

M
fq

1;EoM
(�, ⇠)

⇠ fq?
EoM

(�, ⇠) = ⇠ f̃q?(�, ⇠) + fq

1;EoM
(�, ⇠) , (17)

where the uTMDs with a tilde are the gluonic con-
tributions. The relevant point is the dependence of
all the subleading-twist uTMDs from only the leading
one, modulo the gluonic terms. In our fully interact-
ing framework, one can anticipate that the relations
are not recovered, and rather heavily broken. For a
derivation of the first line of Eq. (17), fully consistent
with QCD, one could apply the formalism presented
in Ref. [85].

Following Eq. (10), one readily writes down charge-
symmetric and the anti-symmetric combinations for
the subleading TMDs. One has to take care how the
scalar and vector operators behave under the charge
conjugation that impose a di↵erent combination of
signs (cf. below Eq. (9)). Namely, one gets

M
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i
. (18)

M
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NcM
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Tr
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· k? . (19)

A. The BS-amplitude and its Nakanishi integral
representation

It is useful to briefly recall some features of our ap-
proach for obtaining the actual solution of the ladder
BSE given in Eq. (6). The basic ingredient is the
NIR of the BS-amplitude (see Ref. [64] for the general
introduction, and Refs. [62, 76, 87–89] for the appli-
cation to a two-fermion case), but let us first intro-
duce the general decomposition of the BS-amplitude,
�(k;P ), for a 0� bound state, viz. [87, 90]

�(k;P ) = S1(k;P )�1(k;P ) + S2(k;P )�2(k;P )

+S3(k;P )�3(k;P ) + S4(k;P )�4(k;P ) , (20)

where �i’s are unknown scalar functions, that depend
upon the kinematical scalars at disposal (k2, k ·P andLorcé,  Pasquini,  Schweitzer, EPJ C 76, 415 (2016) 
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taken distinct from the one responsible for the e↵ec-
tive mass of the constituents. In particular, the dif-
ference between the two symmetric PDFs, i.e. uS(⇠)
and uLF

val
(⇠) (recall that has Pval = 0.7), can be traced

back to the non negligible probability of the higher
Fock states (HFS), where a qq̄ pair interacts by ex-
changing any number of gluons. Interestingly, the dif-
ference can be e↵ectively described only by a factor,
since it turns out that uLF

val
(⇠)/Pval largely overlaps

uS(⇠). Finally, also the small, but relevant, shift of
the quark PDF with respect to uS(⇠) has to be as-
cribed to the presence of HFS, as discussed in what
follows.
To get a qualitative view, we remind that the

pion state can be, in principle, decomposed in Fock-
components, which are schematically written in ladder
approximation as

|⇡i = |qq̄i+ |qq̄gi+ |qq̄ 2gi+ · · · (34)

Due to the charge symmetry, each Fock-component is
invariant by q $ q̄, and hence the valence state |qq̄i
provides a symmetric contribution to uq(⇠), identified
with uLF

val
(⇠). The following terms contain gluons up

to infinity. In our model, the gluon has an e↵ective
mass about twice the quark mass, so that the HFS cu-
mulative e↵ect results in a small shift of the uq(⇠) peak
at ⇠ < 1/2, as shown in the right panel of Fig. 1. Ac-
tually, a similar e↵ect, related to the increasing mass
of the remnant, can be also recognized in the nucleon,
where one has a valence parton distribution with a
peak around 1/3 due to the presence of the other two
constituent quarks. In the case of the pion, the e↵ect
is small since the valence component |qq̄i has 70% of
probability (as generated by our dynamical calcula-
tion), and hence is largely dominant.

To become more quantitative and illustrate this ef-
fect, we schematically write the quark PDF by using
the Fock expansion of the pion state, Eq. (34), and
inserting LF variables [79], one has

uq(⇠) =
1X

n=2

(
nY

i
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where ⇠1(2) is the longitudinal-momentum fraction
of the quark (antiquark) in each Fock state, com-
posed by a qq̄ pair and n � 2 gluons, generated by
the iteration of the one-gluon exchange. Moreover,

 n(⇠1,k1?, ⇠2,k2?, ...) is the probability amplitude of
the corresponding Fock component and fulfills a nor-
malization condition that follows from the one of the
pion state. In the n-th state one has

⇠1 = 1� ⇠2 �
nX

g=3

⇠g . (36)

Since ⇠i > 0 for massive particles, the average value
of ⇠1 starts to decreases while the number of gluons
increases, as quantitatively shown in what follows.

Looking at the right panel of Fig. 1, one can realize
that while the valence term, with probability Pval =
0.7, has a peak at ⇠1 = ⇠2 = 1/2, given the symmetry
of | 2(⇠1,k1?, ⇠2,k2?)|2 all the HFS shift the peak to
⇠1 < 1/2, and decrease the tail, due to the constraint
of the overall normalization. This is reflected in the
evaluation of the first moment (recall ⇠q ⌘ ⇠1)

h⇠qi = Pval h⇠qival +
X

n>2

Pn h⇠qin

= Pval h⇠qival + (1� Pval) h⇠qiHFS , (37)

where Pn is the probability of the n-th Fock state
beyond the valence one. The first term in Eq. (37)
is equal to 0.35, since 1/2 is weighted by Pval, and
the rest is weighted by 0.3. Notice that for each HFS,
normalized to 1, one has

h⇠qin = 1� h⇠q̄in �

nX

i=3

h⇠giin

= 1� h⇠q̄in � (n� 2)h⇠gin , (38)

where the gluon bosonic nature leads to the factor
n� 2.

The actual value of the first moment of uq(⇠) is

h⇠qi =

Z 1

0
d⇠

Z 1

0
d� ⇠ fq

1 (�, ⇠) = 0.471 , (39)

that amounts to an average of h⇠qiHFS equal to 0.40.
We can further analyse h⇠qiHFS , aiming at extract-

ing a quantitative estimate of the exchanged-gluon
contribution, h⇠gi. From the momentum sum rule
Eq. (37), and recalling Eq. (36), we get

h⇠qiHFS =
1

1� Pval

X

n>2

Pn h⇠qin

= 1� h⇠q̄iHFS � h⇠gi , (40)

where

h⇠gi =
1

1� Pval

X

n�3

Pn(n� 2) h⇠gin . (41)
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taken distinct from the one responsible for the e↵ec-
tive mass of the constituents. In particular, the dif-
ference between the two symmetric PDFs, i.e. uS(⇠)
and uLF

val
(⇠) (recall that has Pval = 0.7), can be traced

back to the non negligible probability of the higher
Fock states (HFS), where a qq̄ pair interacts by ex-
changing any number of gluons. Interestingly, the dif-
ference can be e↵ectively described only by a factor,
since it turns out that uLF

val
(⇠)/Pval largely overlaps

uS(⇠). Finally, also the small, but relevant, shift of
the quark PDF with respect to uS(⇠) has to be as-
cribed to the presence of HFS, as discussed in what
follows.
To get a qualitative view, we remind that the

pion state can be, in principle, decomposed in Fock-
components, which are schematically written in ladder
approximation as

|⇡i = |qq̄i+ |qq̄gi+ |qq̄ 2gi+ · · · (34)

Due to the charge symmetry, each Fock-component is
invariant by q $ q̄, and hence the valence state |qq̄i
provides a symmetric contribution to uq(⇠), identified
with uLF

val
(⇠). The following terms contain gluons up

to infinity. In our model, the gluon has an e↵ective
mass about twice the quark mass, so that the HFS cu-
mulative e↵ect results in a small shift of the uq(⇠) peak
at ⇠ < 1/2, as shown in the right panel of Fig. 1. Ac-
tually, a similar e↵ect, related to the increasing mass
of the remnant, can be also recognized in the nucleon,
where one has a valence parton distribution with a
peak around 1/3 due to the presence of the other two
constituent quarks. In the case of the pion, the e↵ect
is small since the valence component |qq̄i has 70% of
probability (as generated by our dynamical calcula-
tion), and hence is largely dominant.

To become more quantitative and illustrate this ef-
fect, we schematically write the quark PDF by using
the Fock expansion of the pion state, Eq. (34), and
inserting LF variables [79], one has

uq(⇠) =
1X

n=2

(
nY

i
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where ⇠1(2) is the longitudinal-momentum fraction
of the quark (antiquark) in each Fock state, com-
posed by a qq̄ pair and n � 2 gluons, generated by
the iteration of the one-gluon exchange. Moreover,

 n(⇠1,k1?, ⇠2,k2?, ...) is the probability amplitude of
the corresponding Fock component and fulfills a nor-
malization condition that follows from the one of the
pion state. In the n-th state one has

⇠1 = 1� ⇠2 �
nX

g=3

⇠g . (36)

Since ⇠i > 0 for massive particles, the average value
of ⇠1 starts to decreases while the number of gluons
increases, as quantitatively shown in what follows.

Looking at the right panel of Fig. 1, one can realize
that while the valence term, with probability Pval =
0.7, has a peak at ⇠1 = ⇠2 = 1/2, given the symmetry
of | 2(⇠1,k1?, ⇠2,k2?)|2 all the HFS shift the peak to
⇠1 < 1/2, and decrease the tail, due to the constraint
of the overall normalization. This is reflected in the
evaluation of the first moment (recall ⇠q ⌘ ⇠1)

h⇠qi = Pval h⇠qival +
X

n>2

Pn h⇠qin

= Pval h⇠qival + (1� Pval) h⇠qiHFS , (37)

where Pn is the probability of the n-th Fock state
beyond the valence one. The first term in Eq. (37)
is equal to 0.35, since 1/2 is weighted by Pval, and
the rest is weighted by 0.3. Notice that for each HFS,
normalized to 1, one has

h⇠qin = 1� h⇠q̄in �

nX

i=3

h⇠giin

= 1� h⇠q̄in � (n� 2)h⇠gin , (38)

where the gluon bosonic nature leads to the factor
n� 2.

The actual value of the first moment of uq(⇠) is

h⇠qi =

Z 1

0
d⇠

Z 1

0
d� ⇠ fq

1 (�, ⇠) = 0.471 , (39)

that amounts to an average of h⇠qiHFS equal to 0.40.
We can further analyse h⇠qiHFS , aiming at extract-

ing a quantitative estimate of the exchanged-gluon
contribution, h⇠gi. From the momentum sum rule
Eq. (37), and recalling Eq. (36), we get

h⇠qiHFS =
1

1� Pval

X

n>2

Pn h⇠qin

= 1� h⇠q̄iHFS � h⇠gi , (40)

where

h⇠gi =
1

1� Pval

X

n�3

Pn(n� 2) h⇠gin . (41)
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taken distinct from the one responsible for the e↵ec-
tive mass of the constituents. In particular, the dif-
ference between the two symmetric PDFs, i.e. uS(⇠)
and uLF

val
(⇠) (recall that has Pval = 0.7), can be traced

back to the non negligible probability of the higher
Fock states (HFS), where a qq̄ pair interacts by ex-
changing any number of gluons. Interestingly, the dif-
ference can be e↵ectively described only by a factor,
since it turns out that uLF

val
(⇠)/Pval largely overlaps

uS(⇠). Finally, also the small, but relevant, shift of
the quark PDF with respect to uS(⇠) has to be as-
cribed to the presence of HFS, as discussed in what
follows.
To get a qualitative view, we remind that the

pion state can be, in principle, decomposed in Fock-
components, which are schematically written in ladder
approximation as

|⇡i = |qq̄i+ |qq̄gi+ |qq̄ 2gi+ · · · (34)

Due to the charge symmetry, each Fock-component is
invariant by q $ q̄, and hence the valence state |qq̄i
provides a symmetric contribution to uq(⇠), identified
with uLF

val
(⇠). The following terms contain gluons up

to infinity. In our model, the gluon has an e↵ective
mass about twice the quark mass, so that the HFS cu-
mulative e↵ect results in a small shift of the uq(⇠) peak
at ⇠ < 1/2, as shown in the right panel of Fig. 1. Ac-
tually, a similar e↵ect, related to the increasing mass
of the remnant, can be also recognized in the nucleon,
where one has a valence parton distribution with a
peak around 1/3 due to the presence of the other two
constituent quarks. In the case of the pion, the e↵ect
is small since the valence component |qq̄i has 70% of
probability (as generated by our dynamical calcula-
tion), and hence is largely dominant.

To become more quantitative and illustrate this ef-
fect, we schematically write the quark PDF by using
the Fock expansion of the pion state, Eq. (34), and
inserting LF variables [79], one has

uq(⇠) =
1X

n=2

(
nY

i

Z
d2ki?
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0
d⇠i
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where ⇠1(2) is the longitudinal-momentum fraction
of the quark (antiquark) in each Fock state, com-
posed by a qq̄ pair and n � 2 gluons, generated by
the iteration of the one-gluon exchange. Moreover,

 n(⇠1,k1?, ⇠2,k2?, ...) is the probability amplitude of
the corresponding Fock component and fulfills a nor-
malization condition that follows from the one of the
pion state. In the n-th state one has

⇠1 = 1� ⇠2 �
nX

g=3

⇠g . (36)

Since ⇠i > 0 for massive particles, the average value
of ⇠1 starts to decreases while the number of gluons
increases, as quantitatively shown in what follows.

Looking at the right panel of Fig. 1, one can realize
that while the valence term, with probability Pval =
0.7, has a peak at ⇠1 = ⇠2 = 1/2, given the symmetry
of | 2(⇠1,k1?, ⇠2,k2?)|2 all the HFS shift the peak to
⇠1 < 1/2, and decrease the tail, due to the constraint
of the overall normalization. This is reflected in the
evaluation of the first moment (recall ⇠q ⌘ ⇠1)

h⇠qi = Pval h⇠qival +
X

n>2

Pn h⇠qin

= Pval h⇠qival + (1� Pval) h⇠qiHFS , (37)

where Pn is the probability of the n-th Fock state
beyond the valence one. The first term in Eq. (37)
is equal to 0.35, since 1/2 is weighted by Pval, and
the rest is weighted by 0.3. Notice that for each HFS,
normalized to 1, one has

h⇠qin = 1� h⇠q̄in �

nX

i=3

h⇠giin

= 1� h⇠q̄in � (n� 2)h⇠gin , (38)

where the gluon bosonic nature leads to the factor
n� 2.

The actual value of the first moment of uq(⇠) is

h⇠qi =

Z 1

0
d⇠

Z 1

0
d� ⇠ fq

1 (�, ⇠) = 0.471 , (39)

that amounts to an average of h⇠qiHFS equal to 0.40.
We can further analyse h⇠qiHFS , aiming at extract-

ing a quantitative estimate of the exchanged-gluon
contribution, h⇠gi. From the momentum sum rule
Eq. (37), and recalling Eq. (36), we get

h⇠qiHFS =
1

1� Pval

X

n>2

Pn h⇠qin

= 1� h⇠q̄iHFS � h⇠gi , (40)

where

h⇠gi =
1

1� Pval

X

n�3

Pn(n� 2) h⇠gin . (41)
momentum sum-rule in the HFS
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taken distinct from the one responsible for the e↵ec-
tive mass of the constituents. In particular, the dif-
ference between the two symmetric PDFs, i.e. uS(⇠)
and uLF

val
(⇠) (recall that has Pval = 0.7), can be traced

back to the non negligible probability of the higher
Fock states (HFS), where a qq̄ pair interacts by ex-
changing any number of gluons. Interestingly, the dif-
ference can be e↵ectively described only by a factor,
since it turns out that uLF

val
(⇠)/Pval largely overlaps

uS(⇠). Finally, also the small, but relevant, shift of
the quark PDF with respect to uS(⇠) has to be as-
cribed to the presence of HFS, as discussed in what
follows.
To get a qualitative view, we remind that the

pion state can be, in principle, decomposed in Fock-
components, which are schematically written in ladder
approximation as

|⇡i = |qq̄i+ |qq̄gi+ |qq̄ 2gi+ · · · (34)

Due to the charge symmetry, each Fock-component is
invariant by q $ q̄, and hence the valence state |qq̄i
provides a symmetric contribution to uq(⇠), identified
with uLF

val
(⇠). The following terms contain gluons up

to infinity. In our model, the gluon has an e↵ective
mass about twice the quark mass, so that the HFS cu-
mulative e↵ect results in a small shift of the uq(⇠) peak
at ⇠ < 1/2, as shown in the right panel of Fig. 1. Ac-
tually, a similar e↵ect, related to the increasing mass
of the remnant, can be also recognized in the nucleon,
where one has a valence parton distribution with a
peak around 1/3 due to the presence of the other two
constituent quarks. In the case of the pion, the e↵ect
is small since the valence component |qq̄i has 70% of
probability (as generated by our dynamical calcula-
tion), and hence is largely dominant.

To become more quantitative and illustrate this ef-
fect, we schematically write the quark PDF by using
the Fock expansion of the pion state, Eq. (34), and
inserting LF variables [79], one has

uq(⇠) =
1X

n=2

(
nY
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where ⇠1(2) is the longitudinal-momentum fraction
of the quark (antiquark) in each Fock state, com-
posed by a qq̄ pair and n � 2 gluons, generated by
the iteration of the one-gluon exchange. Moreover,

 n(⇠1,k1?, ⇠2,k2?, ...) is the probability amplitude of
the corresponding Fock component and fulfills a nor-
malization condition that follows from the one of the
pion state. In the n-th state one has

⇠1 = 1� ⇠2 �
nX

g=3

⇠g . (36)

Since ⇠i > 0 for massive particles, the average value
of ⇠1 starts to decreases while the number of gluons
increases, as quantitatively shown in what follows.

Looking at the right panel of Fig. 1, one can realize
that while the valence term, with probability Pval =
0.7, has a peak at ⇠1 = ⇠2 = 1/2, given the symmetry
of | 2(⇠1,k1?, ⇠2,k2?)|2 all the HFS shift the peak to
⇠1 < 1/2, and decrease the tail, due to the constraint
of the overall normalization. This is reflected in the
evaluation of the first moment (recall ⇠q ⌘ ⇠1)

h⇠qi = Pval h⇠qival +
X

n>2

Pn h⇠qin

= Pval h⇠qival + (1� Pval) h⇠qiHFS , (37)

where Pn is the probability of the n-th Fock state
beyond the valence one. The first term in Eq. (37)
is equal to 0.35, since 1/2 is weighted by Pval, and
the rest is weighted by 0.3. Notice that for each HFS,
normalized to 1, one has

h⇠qin = 1� h⇠q̄in �

nX

i=3

h⇠giin

= 1� h⇠q̄in � (n� 2)h⇠gin , (38)

where the gluon bosonic nature leads to the factor
n� 2.

The actual value of the first moment of uq(⇠) is

h⇠qi =

Z 1

0
d⇠

Z 1

0
d� ⇠ fq

1 (�, ⇠) = 0.471 , (39)

that amounts to an average of h⇠qiHFS equal to 0.40.
We can further analyse h⇠qiHFS , aiming at extract-

ing a quantitative estimate of the exchanged-gluon
contribution, h⇠gi. From the momentum sum rule
Eq. (37), and recalling Eq. (36), we get

h⇠qiHFS =
1

1� Pval

X

n>2

Pn h⇠qin

= 1� h⇠q̄iHFS � h⇠gi , (40)

where

h⇠gi =
1

1� Pval

X

n�3

Pn(n� 2) h⇠gin . (41)
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taken distinct from the one responsible for the e↵ec-
tive mass of the constituents. In particular, the dif-
ference between the two symmetric PDFs, i.e. uS(⇠)
and uLF

val
(⇠) (recall that has Pval = 0.7), can be traced

back to the non negligible probability of the higher
Fock states (HFS), where a qq̄ pair interacts by ex-
changing any number of gluons. Interestingly, the dif-
ference can be e↵ectively described only by a factor,
since it turns out that uLF

val
(⇠)/Pval largely overlaps

uS(⇠). Finally, also the small, but relevant, shift of
the quark PDF with respect to uS(⇠) has to be as-
cribed to the presence of HFS, as discussed in what
follows.
To get a qualitative view, we remind that the

pion state can be, in principle, decomposed in Fock-
components, which are schematically written in ladder
approximation as

|⇡i = |qq̄i+ |qq̄gi+ |qq̄ 2gi+ · · · (34)

Due to the charge symmetry, each Fock-component is
invariant by q $ q̄, and hence the valence state |qq̄i
provides a symmetric contribution to uq(⇠), identified
with uLF

val
(⇠). The following terms contain gluons up

to infinity. In our model, the gluon has an e↵ective
mass about twice the quark mass, so that the HFS cu-
mulative e↵ect results in a small shift of the uq(⇠) peak
at ⇠ < 1/2, as shown in the right panel of Fig. 1. Ac-
tually, a similar e↵ect, related to the increasing mass
of the remnant, can be also recognized in the nucleon,
where one has a valence parton distribution with a
peak around 1/3 due to the presence of the other two
constituent quarks. In the case of the pion, the e↵ect
is small since the valence component |qq̄i has 70% of
probability (as generated by our dynamical calcula-
tion), and hence is largely dominant.

To become more quantitative and illustrate this ef-
fect, we schematically write the quark PDF by using
the Fock expansion of the pion state, Eq. (34), and
inserting LF variables [79], one has

uq(⇠) =
1X

n=2

(
nY
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where ⇠1(2) is the longitudinal-momentum fraction
of the quark (antiquark) in each Fock state, com-
posed by a qq̄ pair and n � 2 gluons, generated by
the iteration of the one-gluon exchange. Moreover,

 n(⇠1,k1?, ⇠2,k2?, ...) is the probability amplitude of
the corresponding Fock component and fulfills a nor-
malization condition that follows from the one of the
pion state. In the n-th state one has

⇠1 = 1� ⇠2 �
nX

g=3

⇠g . (36)

Since ⇠i > 0 for massive particles, the average value
of ⇠1 starts to decreases while the number of gluons
increases, as quantitatively shown in what follows.

Looking at the right panel of Fig. 1, one can realize
that while the valence term, with probability Pval =
0.7, has a peak at ⇠1 = ⇠2 = 1/2, given the symmetry
of | 2(⇠1,k1?, ⇠2,k2?)|2 all the HFS shift the peak to
⇠1 < 1/2, and decrease the tail, due to the constraint
of the overall normalization. This is reflected in the
evaluation of the first moment (recall ⇠q ⌘ ⇠1)

h⇠qi = Pval h⇠qival +
X

n>2

Pn h⇠qin

= Pval h⇠qival + (1� Pval) h⇠qiHFS , (37)

where Pn is the probability of the n-th Fock state
beyond the valence one. The first term in Eq. (37)
is equal to 0.35, since 1/2 is weighted by Pval, and
the rest is weighted by 0.3. Notice that for each HFS,
normalized to 1, one has

h⇠qin = 1� h⇠q̄in �

nX

i=3

h⇠giin

= 1� h⇠q̄in � (n� 2)h⇠gin , (38)

where the gluon bosonic nature leads to the factor
n� 2.

The actual value of the first moment of uq(⇠) is

h⇠qi =

Z 1

0
d⇠

Z 1

0
d� ⇠ fq

1 (�, ⇠) = 0.471 , (39)

that amounts to an average of h⇠qiHFS equal to 0.40.
We can further analyse h⇠qiHFS , aiming at extract-

ing a quantitative estimate of the exchanged-gluon
contribution, h⇠gi. From the momentum sum rule
Eq. (37), and recalling Eq. (36), we get

h⇠qiHFS =
1

1� Pval

X

n>2

Pn h⇠qin

= 1� h⇠q̄iHFS � h⇠gi , (40)

where

h⇠gi =
1

1� Pval

X

n�3

Pn(n� 2) h⇠gin . (41)
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FIG. 1. (Color online). Left panel: the symmetric pion PDF, uS(⇠), with its contributions uS
N (⇠), uS

d (⇠) and uS
2d(⇠) (cf

Eq. (31)). Dash-dotted line: uS(⇠). Dashed line: uS
N (⇠). Dotted line: uS

d (⇠). Dash-double-dotted line: uS
2d(⇠). Right

panel: uq(⇠), uS(⇠), uAS(⇠) and the LF-valence PDF of the pion, uLF
val(⇠). Solid line: quark PDF, Eq. (31). Dashed line:

uS(⇠). Dotted line: uAS(⇠). Dash-dotted line: uLF
val(⇠) (see Ref. [76]), with normalization equal to Pval = 0.7 (see text).

with the normalization that follows from Eq. (29)
and the vanishing result of the double integration of
fAS

1 (�, ⇠). Finally, the quark and anti-quark PDFs
are evaluated through

uq(q̄)(⇠) = uS(⇠)± uAS(⇠) , (31)

with the normalization still given by Eq. (29). Within
the SU(3)-flavor symmetry, one has to implement the
charge symmetry (see, e.g. Ref. [81]) at the initial
scale, and therefore uS(⇠) is the PDF to be com-
pared, after the proper evolution, with the experimen-
tal data, as it has been shown in Ref. [76].
In the left panel of Fig. 1, uS(⇠) and its three

contributions (see Eqs. (D4), (D5) and (D6)) are
shown. The calculation has been carried out by
adopting the BS-amplitude obtained by using the so-
lution of the BSE as described in Ref. [62], using
the following values of the three input parameters:
m = 255 MeV, µ = 637.5 MeV and ⇤ = 306 MeV,
able to reproduce the pion decay constant fPDG

⇡
=

130.50(1)(3)(13)MeV [93] (recall that the pion charge
radius results to be rch = 0.663 fm [75], in excellent
agreement with rPDG

ch
= 0.659± 0.004 fm [94]). A re-

markable cancellation among the contributions takes
place, and this represents a common feature for all
the integrated quantities generated by the uTMDs we
are considering. In the right panel, one can see the
comparison between the quark PDF, uS(AS)(⇠) and
the LF-valence PDF, resulting from the one-to-one

relation between the LF-projected BS amplitude and
the valence amplitude of the Fock expansion of the
pion state. In particular, the LF-valence PDF (see
Refs. [62, 76]), is given by

uLF

val
(⇠) =

Z 1

0

d�

(4⇡)2

h
| "#(�, z)|

2+| ""(�, z)|
2
i
, (32)

where ⇠ = (1�z)/2,  "#(�, z) is the anti-aligned com-
ponent of the LF-valence amplitude and  ""(�, z) the
aligned one (of purely relativistic nature having an
orbital angular momentum equal to 1). These ampli-
tudes are suitable combinations of the LF-projected
scalar functions �i(k;P ), Eq. (22). The integral on ⇠
of LF-valence PDF gives the probability of the valence
state in the Fock expansion and amounts to

Pval =

Z 1

0
d⇠ uLF

val
(⇠) = 0.7 . (33)

The striking feature shown in the left panel is the
shift toward low ⇠ of the quark PDF, so that for this
quantity the symmetry ⇠ ! 1� ⇠ is slightly violated.

B. Analysing the shift and the gluon content

The PDF calculations based on the BS-amplitude
are able to capture an explicit gluonic e↵ect, to be
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taken distinct from the one responsible for the e↵ec-
tive mass of the constituents. In particular, the dif-
ference between the two symmetric PDFs, i.e. uS(⇠)
and uLF

val
(⇠) (recall that has Pval = 0.7), can be traced

back to the non negligible probability of the higher
Fock states (HFS), where a qq̄ pair interacts by ex-
changing any number of gluons. Interestingly, the dif-
ference can be e↵ectively described only by a factor,
since it turns out that uLF

val
(⇠)/Pval largely overlaps

uS(⇠). Finally, also the small, but relevant, shift of
the quark PDF with respect to uS(⇠) has to be as-
cribed to the presence of HFS, as discussed in what
follows.
To get a qualitative view, we remind that the

pion state can be, in principle, decomposed in Fock-
components, which are schematically written in ladder
approximation as

|⇡i = |qq̄i+ |qq̄gi+ |qq̄ 2gi+ · · · (34)

Due to the charge symmetry, each Fock-component is
invariant by q $ q̄, and hence the valence state |qq̄i
provides a symmetric contribution to uq(⇠), identified
with uLF

val
(⇠). The following terms contain gluons up

to infinity. In our model, the gluon has an e↵ective
mass about twice the quark mass, so that the HFS cu-
mulative e↵ect results in a small shift of the uq(⇠) peak
at ⇠ < 1/2, as shown in the right panel of Fig. 1. Ac-
tually, a similar e↵ect, related to the increasing mass
of the remnant, can be also recognized in the nucleon,
where one has a valence parton distribution with a
peak around 1/3 due to the presence of the other two
constituent quarks. In the case of the pion, the e↵ect
is small since the valence component |qq̄i has 70% of
probability (as generated by our dynamical calcula-
tion), and hence is largely dominant.

To become more quantitative and illustrate this ef-
fect, we schematically write the quark PDF by using
the Fock expansion of the pion state, Eq. (34), and
inserting LF variables [79], one has

uq(⇠) =
1X

n=2

(
nY

i

Z
d2ki?
(2⇡)2

Z 1

0
d⇠i

)

⇥� (⇠ � ⇠1) �

 
1�

nX

i=1

⇠i

!
�

 
nX

i=1

ki?

!

⇥
�� n(⇠1,k1?, ⇠2,k2?, ...)

��2 , (35)

where ⇠1(2) is the longitudinal-momentum fraction
of the quark (antiquark) in each Fock state, com-
posed by a qq̄ pair and n � 2 gluons, generated by
the iteration of the one-gluon exchange. Moreover,

 n(⇠1,k1?, ⇠2,k2?, ...) is the probability amplitude of
the corresponding Fock component and fulfills a nor-
malization condition that follows from the one of the
pion state. In the n-th state one has

⇠1 = 1� ⇠2 �
nX

g=3

⇠g . (36)

Since ⇠i > 0 for massive particles, the average value
of ⇠1 starts to decreases while the number of gluons
increases, as quantitatively shown in what follows.

Looking at the right panel of Fig. 1, one can realize
that while the valence term, with probability Pval =
0.7, has a peak at ⇠1 = ⇠2 = 1/2, given the symmetry
of | 2(⇠1,k1?, ⇠2,k2?)|2 all the HFS shift the peak to
⇠1 < 1/2, and decrease the tail, due to the constraint
of the overall normalization. This is reflected in the
evaluation of the first moment (recall ⇠q ⌘ ⇠1)

h⇠qi = Pval h⇠qival +
X

n>2

Pn h⇠qin

= Pval h⇠qival + (1� Pval) h⇠qiHFS , (37)

where Pn is the probability of the n-th Fock state
beyond the valence one. The first term in Eq. (37)
is equal to 0.35, since 1/2 is weighted by Pval, and
the rest is weighted by 0.3. Notice that for each HFS,
normalized to 1, one has

h⇠qin = 1� h⇠q̄in �

nX

i=3

h⇠giin

= 1� h⇠q̄in � (n� 2)h⇠gin , (38)

where the gluon bosonic nature leads to the factor
n� 2.

The actual value of the first moment of uq(⇠) is

h⇠qi =

Z 1

0
d⇠

Z 1

0
d� ⇠ fq

1 (�, ⇠) = 0.471 , (39)

that amounts to an average of h⇠qiHFS equal to 0.40.
We can further analyse h⇠qiHFS , aiming at extract-

ing a quantitative estimate of the exchanged-gluon
contribution, h⇠gi. From the momentum sum rule
Eq. (37), and recalling Eq. (36), we get

h⇠qiHFS =
1

1� Pval

X

n>2

Pn h⇠qin

= 1� h⇠q̄iHFS � h⇠gi , (40)

where

h⇠gi =
1

1� Pval

X

n�3

Pn(n� 2) h⇠gin . (41)


