ECAL simulation studies

Artur Hoghmrtsyan AANL

Introduction

- \succ Details of simulation
- Energy resolution
- Position reconstruction
- \succ Simulation of optical photons

Simulation details

Example of simulation

- Material PbWO4
- Dimensions 2x2x20 cm
- Matrix size 3x3 (5x5)
- Gap 0.01 mm (galactic)

Possibility to change

- Incident particle energy
- Incident particle type
- Polar angle
- Position on the matrix

A.Hoghmrtsyan (ECAL Meeting) 03.05.21

Energy Resolution

- 50000 event were generated at (0, 0) position for a given energy
- Total energy deposition in the matrix was fit with Novosibirsk function σ
- The resolution was fit with $\frac{\sigma}{E} = \frac{a}{\sqrt{E}} + b$

Resolution as function of polar angle(5x5 matrix)

Angle of electrons	Parameter a [%]	Parameter b [%]
O ⁰	0.901±0.005	0.231±0.002
5°	0.932±0.006	0.236±0.003
10 ⁰	0.941±0.006	0.286±0.004
15 ⁰	0.988+0.006	0.534+0.004

A.Hoghmrtsyan (ECAL Meeting) 03.05.21

position reconstruction (for 3x3 matrix)

- Fixed y=0 coordinate of incident electron
- Uniformly distributed x coordinate over the width of central crystal

$$X_{rec} = \frac{\sum_{i=1}^{9} w_i x_i}{\sum_{i=1}^{9} w_i}$$

- w_i weight as function of dedeposited energy
- x_i the centroid position of corresponding crystal

A.Hoghmrtsyan (ECAL Meeting) 03.05.21

Simulation of optical photons

Added Volumes

•Cathode_diam = 1.5cm	Material = Bialcali
<pre>•Cathode_thick = 0.1mm</pre>	
•PMT_diameter = 1.86cm	Material = Glass
<pre>•PMTWin_thick = 1mm</pre>	
•tedlar_thick = 0.040mm	Material = Polymer
•mylar_thick = 0.025mm	
•glue_thick = 0.035mm	Material = Silgard
•air_gap = 0.035mm	

Reflector Settings that the program allows to declare

- Type specular, diffuse
- Finish groundfrontpainted, polished
- the reflection coefficient for each wavelength of the falling photon

Simulation of optical photons

Number of photons as a percentage for each crystal

1.2%	3.3%	1.2%
3.4%	81.6%	3.3%
1.2%	3.4%	1.2%

A.Hoghmrtsyan (ECAL Meeting) 03.05.21

Backup

A.Hoghmrtsyan (ECAL Meeting) 03.05.21

The difference between reconstructe and generated positions

A.Hoghmrtsyan (ECAL Meeting) 03.05.21

Dependence of maximum bias on cutoff parameter W_0 for incident electron energies of 1-5 GeV.

A.Hoghmrtsyan (ECAL Meeting) 03.05.21

Std Dev of the difference between reconstructed and generated positions

A.Hoghmrtsyan (ECAL Meeting) 03.05.21