NPS/CPS Collaboration Meeting

Jefferson Lab, Newport News, VA

23 January 2018

Tanja Horn

History of NPS Meetings

- 10 November 2012: Workshop on Opportunities for DVCS and other physics with NPS (IPN-Orsay)
- □ 14 November 2013: NPS Collaboration Meeting (JLab)
- □ 19 November 2014: NPS Collaboration Meeting (JLab)
- □ 15-16 June 2015: NPS and PbWO₄ Meeting (JLab)
- □ 21 January 2016: NPS Collaboration Meeting (JLab)
- □ 19 January 2017: NPS Collaboration Meeting (JLab)
- □ 6-7 February 2017: High-Intensity Photon Sources Workshop (CUA)
- □ 23 January 2018: NPS Collaboration Meeting (JLab)

NPS Project Status

Four fully approved experiments, supported by NSF MRI PHY-1530874 (CUA, OU, ODU), international (IPN-Orsay, Glasgow, Yerevan), and JLab

□ Magnet: corrector and main coil construction complete, corrector coil is in test lab, yoke steel cutting nearly final, setting up space in test lab for assembly

\rightarrow See talk by C. Hyde

PMT and HV bases: design drawings final, prototyping, procurements started \rightarrow See talk by F. Barbosa

□ Frame and integrated systems: concepts and initial design complete, detailed drawings to be presented this week

→ See talk by C. Munoz-Camacho

□ Crystals: 460 crystals procured from SICCAS, full crystal testing facilities at CUA and IPN-Orsay, chemical analysis and crystal growth in collaboration with the VSL, synergy with EIC crystal calorimeter R&D, cleanroom ready

\rightarrow See talk by V. Berdnikov

Crystal Quality: Chemical Composition

Developed non-destructive sampling method

□ XRF of 10-15% of 100 SICCAS 2017 crystals in collaboration with VSL

Good Crystals Bad Crystals 0.4 0.4 0.35 0.35 **CRYTUR** 0.3 0.5 0.25 0.25 0.2 0.2 0.15 0.15 0.1 0.1 0.05 0.05 0 CRYTUR 82 CRYTUR II ■ Al2O3 ■ Fe2O3 ■ NiO ■ ZrO2 ■ Fe2O3 ■ NiO ■ SiO2 ■ ZnO 0.4 0.4 0.4 0.35 0.35 0.35 0.3 0.3 0.3 SICCAS 0.25 0.25 0.25 0.2 0.2 0.2 0.15 0.15 0.15 0.1 0.1 0.1 0.05 0.05 0.05 0 SICCA-5022 SICCA-5032 SICCA-5230 ■ Cl ■ CuO ■ Fe2O3 ■ NiO ■ SiO2 ■ Al2O3 ■ Cl ■ Fe2O3 ■ NiO ■ SiO2 ■ Al2O3 ■ Fe2O3 ■ Rb2O 0.8 0.7 0.6 0.5 BTCP 0.4 0.3 0.2 0.1 0 BTCP

■ Al2O3 ■ Fe2O3 ■ NiO ■ SiO2 ■ ZnO ■ ZrO2

Overview of variation in chemical composition

Correlations: chemical composition and optical properties

- Importance of variation in lead and tungsten, as well as other elements on crystal optical properties determined by statistical analysis
- For stoichiometry used a multivariate approach, in which correlations are estimated by a pairwise method
 - Clear dependence of transmittance (420nm) on stoichiometry, light yield does not seem to depend on it

	41202	6-0	CI	C-202	CO	E-202	NIO	PLO	DP-20	6:02	woa	7-0	7-02	Linht	17 420
	AIZUS	CaU	u	Cr205	CuO	Fe2OS	NIU	PDU	KDZU	3102	WUS	ZnU	2102	Yield	LI 420
Al2O3	1.0000	-0.0637	0.0500	0.0222	-0.5035	0.6193	-0.1994	0.2246	0.1136	-0.4142	-0.3617	0.2726	0.2487	0.2094	-0.1775
CaO	-0.0637	1.0000	-0.1947	-0.0910	-0.0910	-0.2581	-0.3309	-0.0255	-0.0910	-0.1440	0.2046	-0.1271	-0.2315	-0.3779	-0.1202
Cl	0.0500	-0.1947	1.0000	-0.1337	0.2209	0.4481	0.6386	0.0721	-0.1337	-0.0945	-0.3613	-0.1868	0.063	-0.2777	-0.1756
Cr2O3	0.0222	-0.0910	-0.1337	1.0000	-0.0625	0.0620	0.3061	0.3970	-0.0625	-0.2357	-0.3078	-0.0873	-0.159 <mark>0</mark>	-0.2804	-0.4934
CuO	-0.5035	-0.0910	0.2209	-0.0625	1.0000	-0.1440	0.2086	0.2237	-0.0625	0.0827	-0.1630	-0.0873	-0.159 <mark>0</mark>	-0.0919	-0.1861
Fe2O3	0.6193	-0.2581	0.4481	0.0620	-0.1440	1.0000	0.1952	0.4125	-0.2305	-0.4911	-0.7115	0.3980	0.45.2	-0.1540	-0.2958
NiO	-0.1994	-0.3309	0.6386	0.3061	0.2086	0.1952	1.0000	0.1406	-0.2273	-0.0730	-0.2637	-0.1491	-0.3345	-0.3974	-0.1615
PbO	0.2246	-0.0255	0.0721	0.3970	0.2237	0.4125	0.1406	1.0000	-0.0700	-0.4356	-0.8960	0.3456	-0.0146	-0.1618	-0.7324
Rb2O	0.1136	-0.0910	-0.1337	-0.0625	-0.0625	-0.2305	-0.2273	-0.0700	1.0000	-0.2357	0.2155	-0.0873	-0.15 <mark>9</mark> 0	0.0512	0.0207
SiO2	-0.4142	-0.1440	-0.0945	-0.2357	0.0827	-0.4911	-0.0730	-0.4356	-0.2357	1.0000	0.3862	-0.0763	-0.199 <mark>9</mark>	0.2082	0.6228
WO3	-0.3617	0.2046	-0.3613	-0.3078	-0.1630	-0.7115	-0.2637	-0.8960	0.2155	0.3862	1.0000	-0.4071	-0.230 <mark>2</mark>	0.1556	0.6197
ZnO	0.2726	-0.1271	-0.1868	-0.0873	-0.0873	0.3980	-0.1491	0.3456	-0.0873	-0.0763	-0.4071	1.0000	0.1292	-0.2337	0.0767
ZrO2	0.2487	-0.2315	0.0636	-0.1590	-0.1590	0.4512	-0.3345	-0.0146	-0.1590	-0.1999	-0.2302	0.1292	1.0000	0.4764	-0.0142
Light	0.2094	-0.3779	-0.2777	-0.2804	-0.0919	-0.1540	-0.3974	-0.1618	0.0512	0.2082	0.1556	-0.2337	0.4764	1.0000	0.1931
Yield															
LT 420	-0.1775	-0.1202	-0.1756	-0.4934	-0.1861	-0.2958	-0.1615	-0.7324	0.0207	0.6228	0.6197	0.0767	-0.0142	01931	1.0000

Correlations: chemical composition and optical properties

THE CATHOLIC UNIVERSITY of AMERICA

To assess the impact of individual chemical components, correlation models were constructed using partial least squares

Next steps:

- Radiation hardness
- Additional crystal samples so far focused on samples that failed at least one optical specification

□ NPS Magnet

0	Procure components		DONE
0	Corrector coil at Jlab, main coil on boat, yoke parts to arrive by 9 Feb. Determine magnet mapping needs Space planning complete	ONGOIN	G/DONE
0	Determine a plan to complete the required mapping data		DONE
0	Map NPS magnet to confirm fringe field estimates	Moved t	o 2018
0	Finalize design for fringe field mitigation		NOT DONE
NPS	High-Voltage Bases		
0	Finalize concept for board layout and connectors for HV and sig	nals	Ongoing/ DONE
0	Identify Board vendors	I	DONE
0	Procure 35 bases through OU	I	DONE

NPS Frame and Support

- Complete removal in design of last small interference at small angles
 DONE
- Finalize light monitoring and curing and integrate with design of frame
- Finalize integration of temperature-stabilization system
- Complete design of support of cantilevered platform
- Complete design for cooling water and power lines for magnet

□ NPS Crystals and readout

- Finalize setting up infrastructure for crystal tests at IPNO and CUA
- O Define and document QA methods, procedures, specifications etc.
- Test (some of) the PbWO4 crystals acquired

Done (100), 460 purchased from SIC, 110 first (?) go to Hall D, Anticipate to purchase 450 from CRYTUR now

Ongoing

DONE?

DONE

DONE

□ Platform for NPS

0	Complete design of support of cantilevered platform Plan	nned for 2018
0	Complete design for cooling water and power lines for magnet	NOT DONE
0	Complete integration of use of SOS detector rails	DONE
0	Complete design of removable guard (personnel safety) rails	Concept DONE
Cabl	ing Concept, DAQ and Electronics	
0	Complete final cabling layout for HV and signal cables	NOT DONE
0	Complete layout of patch panels and DAQ/electronics racks in SHMS h	ut NOT DONE
0	Complete full chain test of fADC readout with NPS 3x3 prototype	NOT DONE

NOT DONE

ONGOING,

Great

progress

□ Start software and simulation development

□ Finalize design of a high-intensity photon source

□ Future Physics with NPS

	methods on the market	
0	Consider further high quality science that could be considered with NPS and CPS	ONGOING /DONE

Goals of this meeting

- □ Formulate 2018 action items for NPS construction and science
- Discuss the timeline of engineering and design for NPS
- Discuss optimization of NPS components
 - O Discussion of PbWO4 and PMT and QA planning
 - Frame design and cooling
- Discuss activities related to cabling, DAQ and electronics
- Discuss path forward for photon source and future experiments with NPS
- Publication of crystal testing results

Pictures of crystals Box 2-1 and Box #4

Box 2-1: 5061-70


```
5026
```


5023 – long scratch

5028

5022 – chipped after thermal annealing

5065

Temperature Profile - Thermal Annealing

Illustration: single P.E. peak and signal