PbWO₄ Specs and QA

Tanja Horn

Final Design Review Crystals

Context for PbWO₄ Specifications

In general, for high-precision electromagnetic calorimetry, the following are of relevance:

- Smaller radiation length for smaller longitudinal size
- Smaller Moliere radius allowing higher granularity
- Smaller decay time
- Better energy resolution. Larger number of photoelectrons per MeV to reach higher resolution
- Reasonable temperature dependence to light yield
- Higher radiation hardness (EM and/or hadron fluences)

Parameter ====== Material	Density (g/cm ³)	Rad. Length (cm)	Moliere Radius (cm)	Decay time (ns)	Light Yield (γ/MeV)	dLY/dT (%/°C)	Rad. Hard. (krad)
NaI(Tl)	3.67	2.59	4.13	245	41000	-0.2	12
CsI(Tl)	4.51	1.86	3.57	1220	60000	0.4	1
CsI	4.51	1.86	3.57	35	1600 400	-0.6 -1.4	1
BaF ₂	4.89	2.03	3.1	650 0.9	16000 2000	-1.9 0.1	>50
CeF ₃	6.16	1.70	2.41	30	2800	~0.1	>100
(BGO) Bi ₄ Ge ₃ O ₁₂	7.13	1.12	2.23	300	8000 4000	-0.9 -1.6	>1000 (recovery
(PWO) PbWO ₄	8.3	0.89	2	30 10	40 240	-2.5	>1000
SciGlass	3.7-4.5	2.2-2.8	23	20-50	500-2000	None	>1000

PbWO₄ meets the requirements of an extremely fast, compact, and radiation hard scintillator material providing sufficient luminescence yield to achieve good energy resolution.

❑ Smaller decay time – fast timing

- LY (100ns)/LY(1us) specification
- Optimizing the light yield relies on crystal transmittance in the near UV region
 - Iongitudinal transmittance specification
 - Transmittance spectrum in agreement with photosensor curve
- Require homogeneous collection of scintillation light along the crystal
 - specification on transverse transmittance
- Mechanical specifications important for assembly, e.g., to minimize gaps
- Raw materials used impact crystal performance QA with vendor

PbWO₄ specifications are similar to those achieved for JLab Projects (NPS, FCAL)

PbWO₄ Specifications

Parameter	Unit	EEEMCAL	Q&A Inform.	
		Required	Source	
Light Yield (LY) at RT	pe/MeV	≥15	Test with γ-source	
(for all sides polished crystals)				
LY(100ns)/LY(1µs)	%	>90	Test with γ-source	
Longitudinal Transmission			Optical	
at λ=360 nm	%	≥35	Measurement	
at λ=420 nm	%	≥60		
at λ=620 nm	%	≥70		
Transverse Transmission and LY uniformity	%	10	Optical	
along crystal			Measurement	
Inhomogeneity of Transverse Transmission $\Delta\lambda$	nm	≤5	Optic. Measure.	
at T=50%				
Induced radiation absorption coefficient Δk			Irradiate with	
at λ =420 nm and RT, for integral dose >100 Gy	m ⁻¹	<1.5	different sources	
Mean value of dk	m ⁻¹	≤1.0	Test	
Tolerance in Length	μm	≤±0,-100	Measure.	
Tolerance in sides	μm	≤±50		
Surface polished, roughness Ra	μm	≤0.02	Vendor	
Tolerance in Rectangularity (90°)	degree	≤0.1	Measure.	
Purity specific. (raw material)			Vendor	
Mo contamination	ppm	<10	Vendor	
La, Y, Nb, Lu contamination	ppm	?	Vendor	

JLab crystal test facility for $PbWO_4$ QA and prototype

- Dedicated cleanroom facility for crystal characterization
 - Mitutoyo QM for mechanical dimensions measurements. Precise to 1 micron.
 - Crystal Light Yield measurements
 - Optical transmittance with integrating sphere
 - Radiation hardness in beam
- Beam test facility with tagged photon beam up to 4-5 GeV
 - Technique demonstrated successfully for NPS can be adapted for EIC prototype tests

Crystal Prototype Beam Test Campaigns at JLab

HyCal (pre-2014) 1152 PbWO₄ crystals (PWO-I) SICCAS/China

3x3 prototypes (2018/19) NP 9 PbWO₄ (PWO-II) crystals CRYTUR/Czech Rep.

12x12 prototypes (2019) 144 PbWO₄ (PWO-II) crystals CRYTUR/Czech Rep/

PbWO₄ crystal production for JLab Projects

Production of PWO crystals at CRYTUR – Turnov, Czech Republic

- long tradition in the production of inorganic scintillators. Restart of PWO production in 2014
- production based on Czochralski technology

- ~2190 PWO crystals delivered continuously for projects at JLab since 2017
- □ Crystals used for both NPS and FCAL-2
- □ All 1100 NPS crystals for NPS passed the NPS quality assurance tests (similar for FCAL-2)

CRYTUR is a well established and tested vendor that can deliver crystals of the quality needed for EIC

Length uniformity of CRYTUR crystals (2017 - present)

7

PbWO₄ Quality Assurance Protocol

- The quality assurance will build on the process developed for NPS and will consist of:
 - 2 step visual inspection
 - mechanical dimension measurement
 - light yield measurement
 - Kinetics
 - transmittance measurement
 - induced radiation absorption coefficient.
 - (as needed surface/chemical analysis)
- Measurements may be carried out at one or more of the QA facilities
 - cross calibration of the setups and systematic checks

Characterization results of CRYTUR produced crystals (2017 - present)

Light Yield (LY)

Longitudinal Transmittance

PbWO₄ Quality Assurance Documentation

- Crystal quality assurance results will be documented in a central location, e.g., a master spreadsheet or Wiki
 - Crystals will be tracked by ID also needed for later module assembly

CUA 0000093598 (2019)

ID #	T 360 nm [%]	T 420 nm [%]	T 620 nm [%]	LY [ph/MeV]	LY (100 ns)/LY (1ms) +/- 3%	Dk (420 nm)	L meas.	W1 meas.	W2 meas.	W3 meas.	W4 meas.	W5 meas.	W6 meas.	W7 meas.	W8 meas.
CUA-001	41.7	67.6	77.1	15.3	94	0.84	199.93	20.43	20.45	20.43	20.44	20.45	20.46	20.48	20.48
CUA-002	48.5	68.9	77.2	15.6	95	0.61	199.97	20.46	20.45	20.46	20.45	20.47	20.44	20.47	20.44
CUA-003	41.7	68.6	77.9	15.8	95	0.570	200.00	20.46	20.46	20.46	20.46	20.47	20.47	20.47	20.47
CUA-004	44.2	69.3	78.8	15.1	94	0.610	199.98	20.46	20.46	20.46	20.47	20.44	20.45	20.44	20.45
CUA-005	41.1	68.0	77.9	16.2	94	0.6	199.99	20.45	20.48	20.44	20.46	20.47	20.46	20.46	20.46
CUA-006	42.7	67.5	78.5	17.7	94	0.79	199.91	20.43	20.42	20.45	20.43	20.46	20.42	20.47	20.43
CUA-007	44.5	68.9	78.3	17.0	95	0.63	199.97	20.43	20.42	20.43	20.42	20.46	20.46	20.47	20.47
CUA-008	45.9	69.1	77.7	16.3	94	0.78	199.94	20.44	20.42	20.50	20.47	20.45	20.45	20.44	20.44
CUA-009	48.0	71.5	78.1	15.1	94	0.53	199.95	20.49	20.49	20.48	20.48	20.46	20.48	20.48	20.50
CUA-010	47.5	70.4	78.0	15.7	95	1.01	199.95	20.47	20.47	20.47	20.47	20.48	20.48	20.50	20.50
CUA-011	48.6	71.5	78.4	17.1	93	0.38	199.96	20.48	20.48	20.47	20.47	20.48	20.50	20.47	20.49
CUA-012	45.6	69.6	78.1	16.4	94	0.98	199.96	20.49	20.47	20.49	20.47	20.48	20.48	20.49	20.50
CUA-013	48.4	71.8	78.1	17.2	95	0.74	199.96	20.49	20.47	20.48	20.46	20.49	20.48	20.50	20.49
CUA-014	47.2	71.2	78.0	15.9	93	0.53	199.96	20.47	20.47	20.47	20.47	20.50	20.48	20.50	20.48
CUA-015	47.3	71.0	78.2	16.7	93	0.99	199.96	20.45	20.44	20.44	20.43	20.46	20.47	20.48	20.49
CUA-016	48.4	71.5	78.6	15.1	94	0.62	199.96	20.45	20.46	20.46	20.46	20.45	20.45	20.46	20.46
CUA-017	45.1	70.8	78.9	16.8	94	0.72	199.97	20.46	20.47	20.47	20.47	20.47	20.47	20.50	20.50
CUA-018	40.9	69.6	78.6	16.5	94	0.83	199.97	20.43	20.46	20.44	20.47	20.47	20.49	20.48	20.50
CUA-019	48.1	71.1	78.6	17.9	94	0.62	199.96	20.49	20.48	20.49	20.48	20.48	20.49	20.48	20.48
CUA-020	46.7	69.6	77.5	15.4	94	0.66	199.95	20.46	20.47	20.47	20.48	20.49	20.49	20.49	20.49
CUA-021	46.2	70.0	77.7	15.0	94	0.88	199.96	20.46	20.46	20.47	20.47	20.48	20.47	20.48	20.48
CUA-022	49.0	72.6	78.9	17.2	94	0.65	199.94	20.48	20.46	20.47	20.45	20.48	20.48	20.49	20.49
CUA-023	48.1	71.1	78.3	15.7	94	0.57	199.96	20.48	20.49	20.48	20.48	20.50	20.50	20.50	20.50
CUA-024	46.7	71.1	78.0	15.1	94	0.87	199.96	20.48	20.48	20.48	20.48	20.50	20.48	20.50	20.49
CUA-025	46.5	71.1	78.3	16.5	94	0.74	199.95	20.48	20.47	20.48	20.47	20.47	20.48	20.48	20.49
CUA-026	47.6	71.4	78.2	15.0	94	0.89	199.96	20.49	20.49	20.49	20.49	20.48	20.49	20.48	20.49
CUA-027	46.7	70.9	78.1	15.3	94	0.73	199.96	20.49	20.49	20.48	20.48	20.48	20.47	20.49	20.48
CUA-028	47.9	71.4	78.1	16.2	94	0.66	199.98	20.49	20.48	20.49	20.48	20.50	20.44	20.50	20.45
CUA-029	47.9	70.8	78.4	15.1	95	0.69	200.00	20.48	20.48	20.47	20.47	20.49	20.48	20.50	20.50

Crystal characterization results

NPS Crystal+PMT+Cable module map

Ansys Thermal Analysis

• Heat load of 0.3 W applied to the rear face (PMT end) of each crystal

Detector Support Group

9

11