Dosimetry for Balloon-based Radiation Therapy

Workshop on Opportunities with Detector Technologies in Nuclear Physics

Catholic University of America January 2018

Cynthia Keppel, Jefferson Lab (with help from Steve Gelmine, Radiadyne)

Balloon use in External Beam Radiation Therapy

Over 50% of (USA) cancer patients receive radiation treatment for localized disease sites, mostly delivered via an external beam (X-ray, proton,..)

Patient immobilization can be critical – *internal structures as well!*

How to accomplish this?....

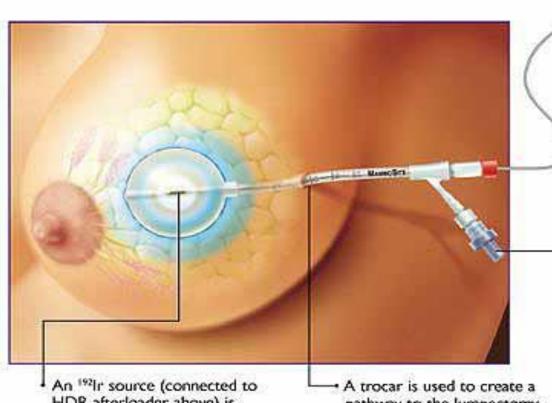
- Immobilizes the prostate
- Reduces movement variation between treatments
- Displaces posterior and superior rectum away from the field
- Reduce rectal toxicity by decreasing the volume of the rectal wall being irradiated
- May allow for physicians to reduce PTV/treatment margins
- Facilitates dose escalation/hypofractionated treatments
- Is well tolerated by prostate patients

balloon

"Brachy" = near, short distance: Internal

Radioactive seeds or sources are placed in or near the tumor, delivering a high radiation dose to the tumor while reducing the radiation exposure to surrounding healthy tissues.

- Where possible, allows delivery of higher doses of radiation to more-specific areas
- Typically causes fewer side effects than does external beam radiation, and the overall treatment time is usually shorter



Used to treat brain, breast, lung, pancreas, prostate, esophagus, cervix,....

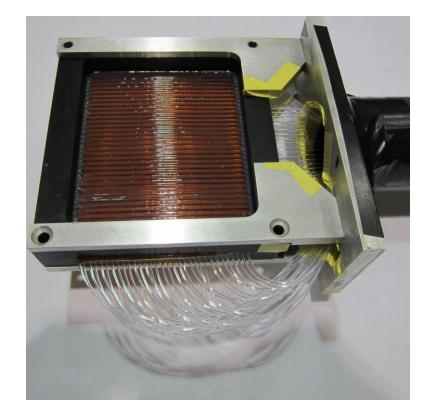
Where do balloons come in?

Example: Brachytherapy for Partial Breast Irradiation

- An ¹⁹²Ir source (connected to HDR afterloader, above) is positioned within the center of the MammoSite balloon to deliver a highly conformal dose to the area immediately surrounding the resected tumor
- A trocar is used to create a pathway to the lumpectomy cavity for insertion of the catheter
- The MammoSite RTS is inflated with saline to allow the surrounding tissue to conform to the balloon

- Radiation is delivered via a high-dose rate (HDR) remote afterloader under precise computer control
- The MammoSite RTS is compatible with Nucletron, Varian, and GammaMed[®] HDR afterloader equipment
- Shorter course of treatment
- Reduced local recurrence rates (0-3%)

"Active Catheter" Development at Hampton University

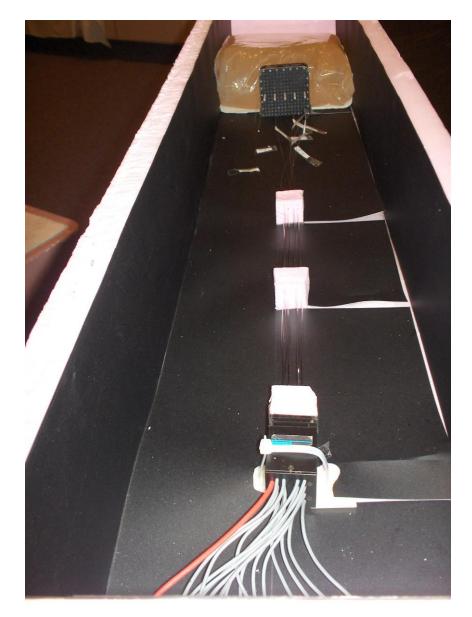

• NO real time dose distribution feedback!

HDR Brachytherapy dose calculations are based on computer simulations and *in-vitro* measurements. It is difficult to set a tolerance level because according to AAPM's TG56: *"no practical and validated dose measurement technology is available to the hospital physicist".*

- Can be large doses
- In-vivo dose measurements would allow for real time evaluation of dose delivered to patient.

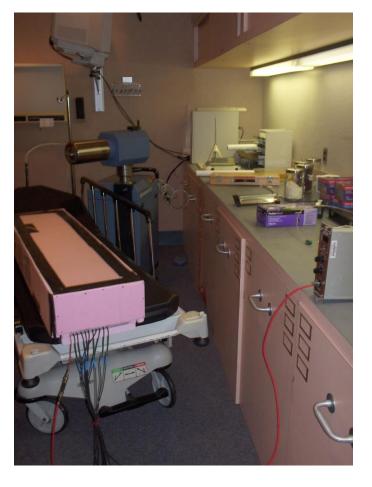
•Increase patient safety since the detector may be used for dose-at-a-point confirmation or to monitor dose absorbed by critical organs.

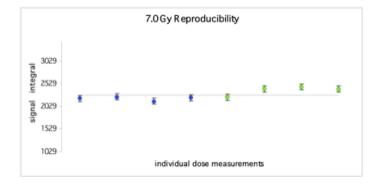
• <u>Idea:</u> What about scintillating fibers (used in nuclear physics) placed INSIDE the catheters?

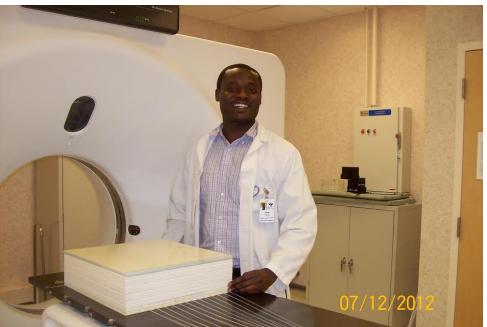

Scintillating fiber array for APEX experiment at Jefferson Lab

Scintillating Fiber Dosimetry

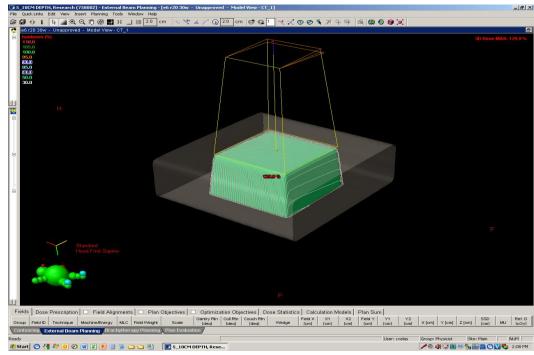
- Hair-like, bendable, radiation sensitive detectors
- Produce light output proportional to dose delivered
- Couple to straightforward electronics




First test set-up: used gelatin mold and brachytherapy surgery metallic template to hold the fibers in place, coupled to Hamamatsu PSPMT



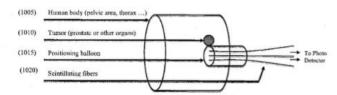
- Students (at that time) Lawrence Tynes, Melissa Barruzza, Carlos Velasco
- HDR unit at Bon Secours DePaul Hospital in Norfolk, VA
- Dose reproducibility studies (also with water phantom and MOSFETs) looked positive....



Continued testing...

- Instrumented a solid water phantom
- Compared to full treatment plan (as well as GEANT4)
- External beam irradiation
- Determined calibration procedure
- Thesis for (then) doctoral student John Okine

Fast forward...


• We patented the technology....

19) United States

(12)	KEPPEI	t Application Publication et al.		(10) Pub. No.(43) Pub. Date			6, 2014
(54)		TUS AND METHOD FOR EXTERNAL ADIATION DISTRIBUTION G	(52)	A61N 5/10 A61M 25/10 U.S. CL	(2006. (2006.		
(71)	Applicant:	Hampton University, Hampton, VA (US)		CPC	A61B 6/425 G01T 1/164		
(72)	Inventors:	Cynthia E. KEPPEL, Norfolk, VA (US); Paul Gueye, Hampton, VA (US); Christopher Sinesi, Virginia Beach, VA		USPC			600/436
		(US)	(57)		ABSTRACT	r.	
(73)	Assignce:	Hampton University, Hampton, VA (US)					
			detec	pparatus and met tion and measure	ement of radi	iation in the	rapy, diag-
21)		(US)	detec nostc tillati	tion and measure s, and related app ing fiber detection	ement of radi lications acco . One examp	iation in the amplished the de includes a	rapy, diag- rough sein- cintillating
(73) (21) (22)	Appl. No.: Filed:	(US) 13/945,167	detec nostc tillati fibers	tion and measure s, and related app ing fiber detection s placed along a d	ement of radi lications acco to One examp felivery guide	iation in the amplished th de includes a c such as a c	rapy, diag- rough sein- cintillating catheter for
(21)	Appl. No.: Filed: Rel Continuati Jul. 22, 20 continuati filed on De is a contin	(US) 13/945,167 Jul. 18, 2013	detec nostc tillati fibers meas ment feedt fibers in the provi	tion and measure s, and related app ing fiber detection	ement of radi lications acco a One examp felivery guids ation levels du is of a radiati iation. Anoth device such a ation delivery, wels correlatin	iation in the omplished th le includes s e such as a o uring radioth ion source, o er option is t is a balloon, o . The scintill ing to the leve	rapy, diag- rough sein- seintillating catheter for erapy treat- r providing to place the r otherwise ating fibers ds of radia-
(21) (22)	Appl. No.: Filed: Red Continuatio Jul. 22, 24 continuatio filed on De is a contin on Dec. 5,	(US) 139945,167 Jul. 18, 2013 lated U.S. Application Data on of application No. 127841,891, filed on 100, now Pat. No. 8,568,285, which is a no-in-part of application No. 127647,920, v. 28, 2009, now Pat. No. 8,133,167, which uation of application No. 11273,161, filed	detec nostc tillati fibers meas ment feedf fibers in the provi tion betw	tion and measure s, and related app ing fiber detection s placed along a d uring applied radii s, sensing location sack of sensed rad into a positioning e field of the radia de light output les	ment of radi dications acco to One example delivery guide tion levels du ass of a radiati iation. Anoth device such a stion delivery, wels correlation ers and con sed for more of	iation in the omplished the de includes see such as a couring radioth ion source, o er option is to as a balloon, or The scintill go the level aparative milextensive dos	rapy, diag- rough scin- scintillating catheter for erapy treat- r providing to place the r otherwise ating fibers els of radia- ensurement te mapping.

Exemplary schematic of a positioning balloon with one or multiple scintillating fibers as an invivo or ex-vivo dosimetry monitoring quality assurance system

Small note: Dosimetric approach also suggested for use in brachytherapy catheters (non-balloon type)

...and it was licensed

List of OARtrac[®] Patents from Radiadyne web page:

US 8603129 B2 US 8885986 B2 US 8953912 B2 *US 7662083 *US 8133167 B2 *US 20140018675

*Hampton University patents developed by HU/JLab Center for Advanced Medical Instrumentation – *licensed to Radiadyne*

...and Radiadyne put in a lot of time, effort, investment, cleverness, dedication - and beyond to bring it to market...

RADIADYNE

»)OARtrac® ⊕plus

Transformation in Dosimetry Monitoring

After eight years and millions of dollars invested in research and development, OARtrac[®] Plus is the first of its kind radiation dose monitoring platform providing gold standard accuracy without correction factors, real-time pinpoint measurement, and dedicated intracavitary delivery devices to measure where it counts.

OARtrac[®] Plus monitors multiple cancer treatment modalities within the same treatment center, as well as reduces overall treatment costs related to routine patient dose monitoring through a reusable dosimeter.

Micro size. Max Performance.

Simple Localization Radiopaque Sensor

Actual size 0.5 mm diameter x 2 mm length

> MR Compatible Threaded Connector

> > Patient Unique ID RFID Chip

Interpose Plastic Scintillating Detector

Water Equivalent

PSD Sensors are manufactured using water equivalent materials and will not perturb the energy deposition process.

FDA Cleared For Reusability

Up to five times with no additional correction factors for cost effective clinical adoption.

Consistent Repeatability

Excellent precision and repeatable data without degradation of dose response or additional correction factors.

Excellent Accuracy

Highly accurate pinpoint measurement in real-time, and exhibits excellent energy independence.

Dose Monitoring at Light Speed

The scintillation light created from radiation interaction is emitted within nanoseconds down the fiber optic cable to the clinical detector unit for real-time measurement.

Clinical Detector Unit Millisecond Processing

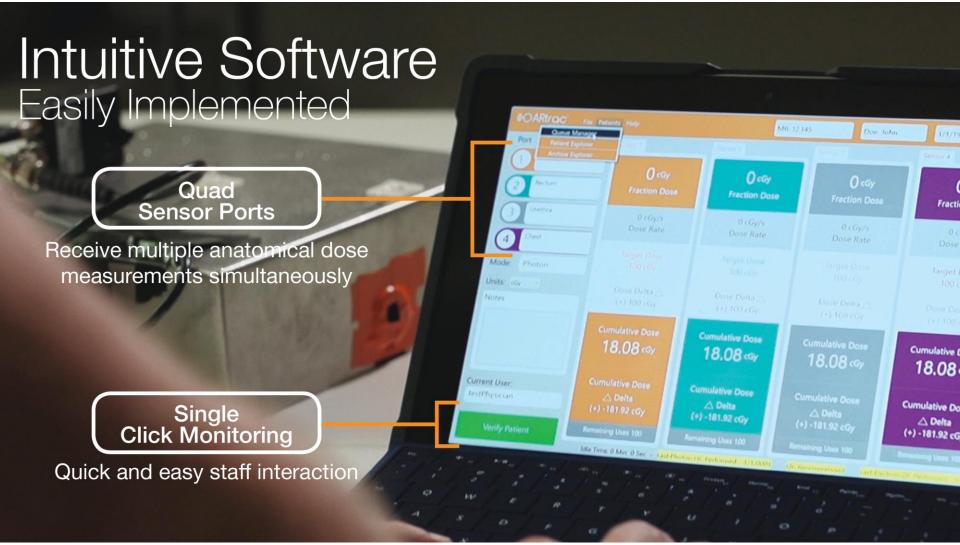
Low Energy Dependence

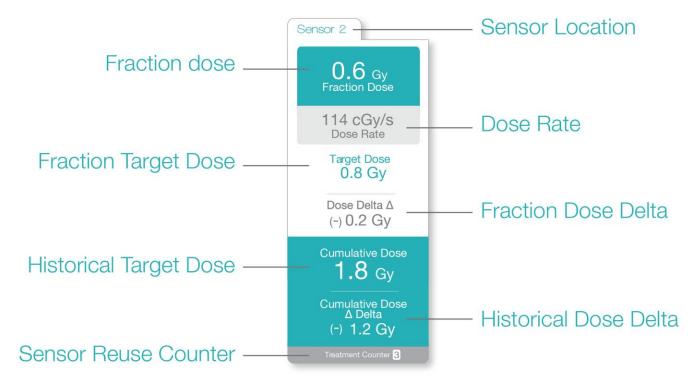
Monitor dose from a low to high energy range (0.2Mev to 20Mev) with no correction factors.

Four Sensor Ports

Measure up to four anatomical readings simultaneously with color coded microPSD sensors.

Real-Time Dose Measurement


Sub-second processing speed providing valuable data for adaptive radiotherapy.


Monitors Multiple Modalities

Universally measures dose for SBRT, IMRT, Cyberknife, Electron*, and HDR Brachytherapy treatment modalities.

*pending FDA clearance

Comprehensive Data Captures Intrafractional & Historical Dose

Intracavitary Devices Measure Dose Where It Counts

Universal Capabilities Specific Anatomical Monitoring

Endorectal Balloon

Stabilizes the Prostate and provides realtime dose measurement at the rectal prostatic interface.

Skin With Bolus

Measures skin dose for Photon, Electron* and HDR Brachytherapy, as well as entrance dose.

Urinary Catheter*

Sterile MR microPSD compatible with commercially available urinary catheters for point dose measurements.

Vaginal Cylinder & Vaginal Balloon Packing* Provides real-time dose information for the organs at risk during GYN treatments.

Future Applications - multiple delivery devices in final stages of development for head & neck and in situ applications.*

*pending FDA clearance

Plug and Play

Precalibrated sensors offer easy routine clinical dose monitoring for the Therapist, Physicist, and Radiation Oncologist.

How It Works Simple Workflow For Routine Use

Significant Clinical Advantages Over OSLDs, TLDs, and MOSFETs

The OARtrac[®] Plus Platform Offers Real-Time In-Vivo Dose Data For True Adaptive Radiotherapy

Simple. Accurate. Real-Time. Know Your Dose

Delores Smith, MD Radiation Oncologist

Please follow us on Linkedin in

All illustrations are for demonstration purposes only

OB-0917 REV00

Thank you!

https://vimeo.com/236786553

