Update on the sweep magnet for the NPS experiments

Bogdan Wojtsekhowski (JLab)

Kinematics of SI pion (E12-13-007)

$\#$	θ_{γ}	θ_{e}	$\mathrm{D}_{\text {mag }}$, m	Bdl, Tm	$\mathrm{D}_{\text {mag }}-$ Calo, m	angle range, degree
A X	10.57	10.27	1.57	0.3	$3-1.57$	
B X	16.20	11.70	1.57	0.3		
C	12.44	15.38	1.57	0.3		
D	7.93	24.15	1.57	0.3	1.43	$4.7-11.1$
E	16.57	15.65	1.57	0.3	1.43	
F	17.23	17.84	1.57	0.3	1.43	

\mathbf{X} - SAM configuration is finalized. We checked 4(5) out of a total of 22 configurations.

Kinematics of DVCS (E12-13-10)

$\#$	θ_{γ}	θ_{e}	$\mathrm{D}_{\text {calo }}, \mathrm{m}$	Bdl, Tm	$\mathrm{D}_{\text {mag }}$ Calo, m	angle range, degree
$3(=\mathrm{B})$	16.2	11.7	3	0.3	1.43	
$5(\sim \mathrm{C})$	12.4	15.3	3	0.3	1.43	
7	21.7	11.7	3	0.3	1.43	
8 X	16.6	15.6	3	0.3	1.43	
13	6.3	27.9	6	0.3	4.43	$3.1-9.6$
16 X	6.3	17.3	6	0.3	4.43	

range of angles: $68 \mathrm{~cm} / 300=>12.8$ degrees
range of angles: $68 \mathrm{~cm} / 600=>6.5$ degrees

Kinematics of WACS (E12-14-003) /Pion

\#	θ_{γ}	θ_{p}	$\begin{gathered} \mathrm{D}_{\mathrm{mag}} \\ \mathrm{~m} \end{gathered}$	Bdl, Tm	$\begin{gathered} \mathrm{D}_{\text {det }}, \\ \mathrm{m} \end{gathered}$	$D_{\text {magr }}{ }^{-}$ Calo, m	Bdl, Tm / $\mathrm{D}_{\text {mag }}$-Calo, m
4A	14.2	$\begin{array}{r} 40 . \\ \hline \end{array}$	$2.45+0.2$	0.3	9.0	6.15	0.3 / (9-1.57)
4B	17.9	$33 .$	$1.65+0.2$	0.4	7.0		
4C	22.5	$\begin{gathered} 27 . \\ \hline 8 \end{gathered}$	$1.65+0.2$	0.5	5.0		
4D	26.9	$\begin{gathered} 23 . \\ 7 \end{gathered}$	1.10+0.2	0.6	3.5		
4E	34.0	$\begin{gathered} 18 . \\ 9 \end{gathered}$	1.10+0.2	0.6	3.0	1.7	0.61 Tm / 1.68
5A	11.0	$41 .$ 7	$2.45+0.2$	0.25	11.0		9.3-12.7 deg
5B	1348	$35 .$	$2.45+0.2$	0.35	9.0 N	meeting Augus	4, 2016

Horizontal field dipole

Parameters

1. Field integral from the target to NPS $\sim 0.58 \mathrm{Tm}$, for the main coil: $1050 \mathrm{~A}, 140 \mathrm{~kW}$ corrector coils ~ $500 \mathrm{~A}, 20 \mathrm{~kW}$
2. Field integral along the beam line from the target to magnet middle Goal is a low transverse BdL, below 1 milli Tm -> OK (see Rolf's) after tuning of the corrector, there is some field at the target and before it.
3. Field integral along the HMS central trajectory from the target to Q1 Goal is to have BdL below 1 milli Tm - > could be hard to do even with the cone on the snout $(\mathrm{t}=5 \mathrm{~mm})$. May need Q 1 in the model.

What are the requirements?

1. A low energy tail for the thin target case, $\mathrm{P}_{\text {loss }}=\mathrm{P} _\mathrm{b} \times 2 \mathrm{t} / 3\left(\mathrm{E}_{\mathrm{cut}} / \mathrm{E}_{\mathrm{b}}\right)^{2}$

It would be great to have $\mathrm{E}_{\text {cut }}=300 \mathrm{MeV}=>0.05 \%$ of beam power

$$
\mathrm{BdL}=3 \mathrm{~cm} / 30 \mathrm{~m} *\left[3 \times 10^{8} / 300\right]=10^{3} \text { Gauss } \mathrm{cm}=1 \text { milli Tm (Rolf's) }
$$

2. HMS optics aberration for $3 \mathrm{GeV} / \mathrm{c}$ and $\mathrm{BdL}=1 \times 10^{3}$ Gauss cm (Rolf's)

$$
\begin{aligned}
& \delta \theta \sim 300 \times \mathrm{BdL} / 3 \times 10^{9}=0.1 \mathrm{mrad} \\
& \text { vertex shift } \sim<0.5 \mathrm{~mm} ?
\end{aligned}
$$

Kinematics "A" for pion

\#	θ_{γ}	$\theta_{\text {e }}$	$\begin{gathered} \mathrm{D}_{\text {mag }}, \\ \mathrm{m} \end{gathered}$	Bdl, Tm	$\begin{gathered} \mathrm{D}_{\mathrm{mag}^{-}} \\ \text {Calo, } \mathrm{m} \end{gathered}$	angle range, degree
A X	10.57	10.27	1.57	0.3	3-1.57	

Opera-3d >

Model Graphs

30/Jul/2016 17:41:55

Kinematics "A" for pion

Kinematics "A" for pion

Kinematics "A" for pion

```
Opera-3d > SET XLOCAL=0 YLOCAL=0 ZLOCAL=-157 PLOCAL=0 TLOCAL=-5.5 SLOCAL=0
Opera-3d > LINE BUFFER='Line' Xl=0 XZ=Xl Yl=0 YZ=Yl Zl=0 ZZ=330 NP=10000 | DATALINE OPTION=CREATE
BUFFER='&WF_PLOTBUFG' MINX=* MAXX=* NAME='NewLine_9' XCOMPONENT=distance
YCOMPONENT=Bx*Cos(5.5/57.3)+Bz*sin(5.5/57.3) INTERPOLATION=LINEAR GRAPH='DEfault'
Integral: 21456.1
Maximum: 358.148 (X at maximum: 229.482)
Minimum: -141.707 (X at minimum: 82.467)
```

Opera-3d >

Kinematics " 16 " for DVCS

\#	θ_{γ}	θ_{e}	$\mathrm{D}_{\text {calo }}, \mathrm{m}$	Bdll^{2} Tm	$\mathrm{D}_{\mathrm{mag}^{-}}$ Calo, m	angle range, degree
$16 \mathbf{X}$	6.3	17.3	6	0.3	4.43	

Opera-3d > THREED OPTION=GETVIEW | THREED OPTION=SETVIEW ROTX=90 ROTY=0.0001 ROTZ=0.0001
Opera-3d > LINE EUFFER='Line' $\mathrm{X} 1=0 \mathrm{X} 2=\mathrm{Xl}$ Yl=0 Y $2=\mathrm{Yl} \quad 21=0 \quad \mathrm{Z} 2=170$ NP $=10000$ | DATALINE OPTION=CREATE BUFFER='6UF_PLOTBUFG' MINX=* MAXX=* NAME='NewLine_2' XCOMPONENT=distance YCOMPONENT=Bx*Cos(19.3/57.3) $+\mathrm{Bz} * \sin (19.3 / 57.3)$ INTERPOLATION=LINEAR GRAPH='Default
Integral: -4374.62
Maximum: 323.246 (X at maximum: 71.315)
Minimum: -254.085 (X at minimum: 92.004)
Opera-3d >
Model Graphs
30/Jul/2016 18:10:36

Kinematics " 16 " for DVCS

```
INTERPOLATION=LINEAR GPAPH='DEfault
Integral: -209.065
Maximum: 369.974 (X at maximum: 76.211)
Minimum: -34l.417 (X at minimum: 85.034)
Opera-3d > SET XLOCAL=0 YLOCAL=0 ZLOCAL=-157 PLOCAL=0 TLOCAL=-19.3 SLOCAL=0
Opera-3d > LINE BUFFER='Line' Xl=0 XZ=Xl Yl=0 YZ=Yl Zl=0 ZZ=170 NP=10000 | DATALINE OPTION=CREATE
BUFFER='&VF_PLOTBUFG' MINX=* MLXX=* NAME='NewLine_l' XCOMPONENT=distance
YCOMPONENT=Bx*gos(19.3/57.3)+Bz*sin(19.3/57.3) INTERPOLATION=LINEAR GRAPH='DEfault
Integral: -4374.62
Maximum: 323.246 (X at maximum: 71.315)
Minimum: -254.085 (X at minimum: 92.004)
```

Opera-3d >

Kinematics "B" for pion

Kinematics "B" for pion

NAME='NewLine' XCOMPONENT=distance YCOMPONENT=Bx*cos (11. 9/57. 3) +Bz*sin (ll.9/57. 3) INTERPOLATION=LINEAR GRAPH='DEfault' Integral: 691.459

Maximum: 131.026 (X at maximum: 44.733)
Minimum: -180.115 (X at minimum: 71.3465)
Opera-3d > SET XLOCAL=0 YLOCAL=0 ZLOCAL=-157 PLOCAL=0 TLOCAL=-23. 6 SLOCAL=0
 NAME = 'NewLine_1' XCOMPONENT=distance YCOMPONENT=Bx*cos (23.6/57.3)+Bz*sin (23.6/57.3) INTERPOLATION=LINEAR GRAPH='Default'
Integral: 155.165
Maximum: 71.6425 (X at maximum: 24.3815)
Minimum: -124.908 (X at minimum: 71.362)
Opera-3d $>$
Model Graphs
Graph Objects
Data
Buffers
Line
-Graph Objects

- Lines

NewLine

- NewLine_1
- Graphs
- Default

NewLine
NewLine_1

Option	Value
Background	
Colour	White
Border Colour	White
Image File	
Title	
Display	Yes
Text	Title
Font	Tahoma, 12pt
Colour	Black
Alignment Mode	Align Centre
Legend	
Disolay	Yes

BdL:

HMS: + 155 Gauss-cm
Beam:+ 691 Gauss-cm

Field on target is
50
Title

~ 60 Gauss

Kinematics " 8 " for DVCS

 XCOMPONENT $=$ distance YCOMPONENT $=B x^{*} \cos (12.3 / 57.3)+B z^{*} \sin (12.3 / 57.3)$ INTERPOLATION=LINEAR GRAPH='Default
Integral: 661.974
Maximum: 131.952 (X at maximum: 39.8815)
Minimum: -265.972 (X at minimum: 71.486)
Opera-3d > THREED OPTION=GETVIETV | THREED OPTION=SETVIEW ROTX=90 ROTY=0. 0001 ROTZ=0. 0001
 XCOMPONENT=distance YCOMPONENT=Bx*cos(12.3/57.3)+Bz*sin(12.3/57.3) INTERPOLATION=LINEAR GRAPH='Default'
Integral: 661.974
Maximum: 131.952 (X at maximum: 39.8815)
Minimum: -265.972 (X at minimum: 71.486)
Opera-3d>

Model Graphs

31/Jul/2016 14:48:53

Kinematics " 8 " for DVCS

Console
XCOMPONENT $=$ di $=$ tance YCOMPONENT $=E x * \cos \{27.9 / 57.3)+E z^{*}=$ in $(27.9 / 57.3)$ INTERPOLATION=LINEAR GRAPH='Default '
Integral: -663.759
Maximum: 65.5011 (X at maximum: 16.089)
Minimum: -121.777 (X at minimum: 70.525)
Opera-3d > SET XLOCAL=0 YLOCAL=O ZLOCAL=-1.57 PLOCAL=O TLOCAL=-12. 3 SLOCAL=0
 XCOMPONENT=distance YCOMPONENT=Ex* $\cos (12.3 / 57.3)+\mathrm{Bz}^{*} \sin (12.3 / 57.3)$ INTERPOLATION=LINEAR GRAPH='DEfault
Integral: 661.974
Maximum: 131.952 (X at maximum: 39.8815 ;
Minimu: -265.972 ix at minimum: 71.486)

Model Graphs
Graph Objects

- Diuffers

Field on target is
~ 60 Gauss

- Default		
Newline_2		
NewLine_3		
Option	Value	-
Background		
Colour	White	
Biorder Colour	White	
Image File		
\square Title		
Display	Yes	
Text	Title	
Font	Tahoma, 12pt	
Colour	Elack	
Alignment Mode	Align Centre	
-Legend		
Display	Yes	
Position	Right	
Hruizantal Dineitimin	089	-

Kinematics＂ 8 ＂for DVCS

File Edit wiew Options Fields Integrals Trajectories Tables Conductors CommandFiles Windows Help

\square

Opera－3d＞THREED OPTION＝GETYIETI THREED OPTION＝SETYIETI ROTX＝0．0001 ROTY＝90 ROTZ＝0．0001
 STATUS＝OLD PRINT＝YES DISPLAY＝YES
Opening file for reading：test．tracks
Track has current $=1.0$
 STATUS＝OLD PRINT＝YES DISPLAY＝YES
Opening file for reading：test．tracks
Track has current $=1.0$
Opera－3d＞THREED OPTION＝GETUIETX｜THREED OPTION＝SETVIEU ROTX＝90 ROTY＝0．OOOL ROTZ＝0．OOOL
Opera－3d＝THREED OPTION＝GETUIETV｜THREED OPTION＝SETVIEU POTX＝0．OOO1 ROTY＝90 ROTZ＝0． 0001

Kinematics " 8 " for DVCS

BdL variation for 0.5 degree

Magnet design/procurement

HMS-beam line

HMS-beam line

HMS-beam line

Magnet design plans

1. Large coil: a detailed drawing is competed (P. Medeiros)
2. The main yoke: magnetic design is finalized. Detailed design could start.
3. Option with an additional air-core corrector on the beam line could help reduction of the field on the target. Partial length cone in HMS?
4. A pipe problem at 10.27 angle of HMS - a low cost pipe is a bit too wide.
5. From Rolf: adjust cone length, keep field on the target as low as possible.
6. A post magnet beam line: a corrector + pipe requires some magnetic design.
