A Cockcroft-Walton HV-Generator / PMT-Base for NPS

Joshua Frechem
Charles Hyde
Old Dominion University
Why C-W Base?

• No HV cables – cuts cost
• Less (?) power dissipation.
• Better (?) stability vs pile-up fluctuations.
• Design Example:
 – ZEUS HCal → JLab/IU RadΦ → RHIC AnDY
Cockcroft-Walton Concept

• Generate HV with a DC Transformer
 – High frequency pulse generator drives a capacitor/diode ladder
 • Rectifiers stacked on rectifiers
 – Our version, 0→+5V pulse at 10–40 KHz drives a transformer to ~ 100V
 – Transformer drives ~20 stage ladder
Benefits of Using Arduino

• Easily programmable through the IDE vs ISP
 – This can be done remotely while installed via USB

• Scripts can be written to sequentially program
 – Eliminates manually having to upload code to each board

• Programs can be used/written to monitor & save
 – Save and monitor HV level for stability

• Easily turn HV on/off via logic gate
Readback is linear

\[y = 1.1153x + 0.4396 \]

\[R^2 = 0.99998 \]
Affect of Resonance on Feedback

Cathode and ADC Response to DAC input

DAC Value

Cathode Voltage

ADU

ADC Voltage
Effect of Resonance on Feedback

• Frequency range can be set to exclude resonance
 – Change resistance between Vcc & Set on oscillator
 – Easier control for when Vset < Vresonance

• Creates a non-linearity that is compensated for in code

• Create code so that resonance frequency is not reached
Sample HV Signal: It Works!

Cockroft-Walton PMT Base Startup

Cathode Voltage (V)

RMS=2.95V ~ 3ADU

Samples (~ms)
Planned Additions

• Mount Arduino on to PCB
• 12bit ADC separate from MCU
 – Allows finer control to match 12bit DAC
• Additional ADP3300 voltage regulator
 – Lower noise supply powering Arduino & transformer
• Smaller transformer
 – Isolation transformer to separate HV chain from digital components?
<table>
<thead>
<tr>
<th>Mfr. #</th>
<th>Manufacturer</th>
<th>Desc.</th>
<th>Order Qty.</th>
<th>Price (USD)</th>
<th>Ext. (USD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PZT3904</td>
<td>Fairchild Semiconductor</td>
<td>BJT NPN Transistor General Purpose</td>
<td>1000</td>
<td>$0.108</td>
<td>$108.00</td>
</tr>
<tr>
<td>750871011</td>
<td>Wurth Electronics</td>
<td>Transformers Audio & Signal 4mH 1.60Ohm</td>
<td>1000</td>
<td>$5.41</td>
<td>$5,410.00</td>
</tr>
<tr>
<td>MCP4725A0T-E/CH</td>
<td>Microchip</td>
<td>Digital to Analog Converters - DAC Sngl 12B NV DAC</td>
<td>1000</td>
<td>$0.73</td>
<td>$730.00</td>
</tr>
<tr>
<td>SN74AHC1G08DBVR</td>
<td>Texas Instruments</td>
<td>Logic Gates Single 2-Input</td>
<td>1000</td>
<td>$0.103</td>
<td>$103.00</td>
</tr>
<tr>
<td>ADP3300ARTZ-5REEL7</td>
<td>Analog Devices Inc.</td>
<td>Linear Voltage Regulators High Acc 50mA LDO</td>
<td>1000</td>
<td>$0.666</td>
<td>$666.00</td>
</tr>
<tr>
<td>TL0621DR</td>
<td>Texas Instruments</td>
<td>Op Amps Dual Low-Noise JFET-Input</td>
<td>1000</td>
<td>$0.282</td>
<td>$282.00</td>
</tr>
<tr>
<td>CRCW080533R0FKEA</td>
<td>Vishay</td>
<td>1/8watt 33ohms 1% 100ppm</td>
<td>1000</td>
<td>$0.019</td>
<td>$19.00</td>
</tr>
<tr>
<td>ERJ-P08J332V</td>
<td>Panasonic</td>
<td>1206 3300ohms 5% Thick Film Resistor</td>
<td>5000</td>
<td>$0.017</td>
<td>$85.00</td>
</tr>
<tr>
<td>CRCW2010100KFKEF</td>
<td>Vishay</td>
<td>0603 88.7Kohms 1% Tol</td>
<td>1000</td>
<td>$0.004</td>
<td>$4.00</td>
</tr>
<tr>
<td>1812HC392KAT1A</td>
<td>AVX</td>
<td>3/4watt 100Kohms 1%</td>
<td>3000</td>
<td>$0.07</td>
<td>$210.00</td>
</tr>
<tr>
<td>C1206C104KARACTU</td>
<td>Kemet</td>
<td>250volts 0.1uF X7R 10%</td>
<td>30000</td>
<td>$0.056</td>
<td>$1,680.00</td>
</tr>
<tr>
<td>C1812C474KARACTU</td>
<td>Kemet</td>
<td>250volts 0.47uF X7R 10%</td>
<td>18000</td>
<td>$0.252</td>
<td>$4,536.00</td>
</tr>
<tr>
<td>C1825C105KARACTU</td>
<td>Kemet</td>
<td>250volts 1uF X7R 10%</td>
<td>5000</td>
<td>$0.648</td>
<td>$3,240.00</td>
</tr>
<tr>
<td>BAV3004WS-7</td>
<td>Diodes Incorporated</td>
<td>Power Switching Diode 200mW 350V</td>
<td>36000</td>
<td>$0.072</td>
<td>$2,592.00</td>
</tr>
<tr>
<td>ERJ-8ENF1204V</td>
<td>Panasonic</td>
<td>1206 1.2Mohms 1% Tolerance</td>
<td>1000</td>
<td>$0.01</td>
<td>$10.00</td>
</tr>
<tr>
<td>LTC1799H558PBF</td>
<td>Linear Technologies</td>
<td>1kHz to 33MHz Resistor set SOT-23 Oscillator</td>
<td>1000</td>
<td>$3.04</td>
<td>$3,040.00</td>
</tr>
<tr>
<td>PCB</td>
<td>Rush PCB</td>
<td></td>
<td>1000</td>
<td>$1.50</td>
<td>$1,500.00</td>
</tr>
<tr>
<td>"Arduino" Nano</td>
<td>Variable</td>
<td>USB controlled Microcontroller</td>
<td>1000</td>
<td>$2.00</td>
<td>$2,000.00</td>
</tr>
<tr>
<td>571-5103309-1</td>
<td>TE Connectivity</td>
<td>HDR VERT DOUBLE 10P low profile</td>
<td>1000</td>
<td>$0.627</td>
<td>$627.00</td>
</tr>
</tbody>
</table>

| Total (1000) | $27,226.00 |
| Total (single) | $27.23 |
Questions We Have

- How will PMT load chance readings?
- What is the Voltage ripple spec (≤ 1V rms ?)
- What is the dynamic range/stability criterion for anode current?
 - 1% at (10 MHz)(10⁵ gain)(10 p.e.) = 2 microAmp ??
- When is the deadline for a design choice
 - Yesterday?
Conclusions

• We have proof-of-principle prototype
 – We think we can improve it to meet spec
• We do not yet have a working PMT base.
 – We think we can get there by April (sooner?)
• Provides a digitally controlled, compact, and efficient alternative to resistive base
Starting Design

Pulse in →

Dynode HV
(12 for AnDY)
10 for NPS

Read back

Cathode

StarTng

Design

Pulse in →

Dynode HV
(12 for AnDY)
10 for NPS

Read back

Cathode
Feedback & Set-Point/Readback Communications

Power / I-O

Arduino

HV Readback to 10-bit ADC

Readback – Setpoint to DAC

Pulse-out to CW

RCO