

NPS COLLABORATION MEETING

Julien Bettane, Giulia Hull, Michaël Josselin, Ho San Ko, Carlos Munoz, Emmanuel Rindel, Thi Trung, Rong Wang

Unité mixte de recherche CNRS-IN2P3 Université Paris-Sud

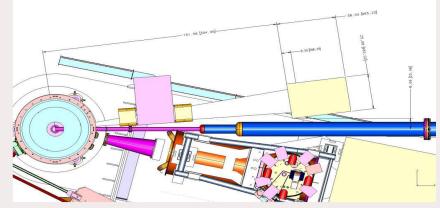
91406 Orsay cedex Tél. : +33 1 69 15 73 40 Fax : +33 1 69 15 64 70 http://ipnweb.in2p3.fr Tuesday 23th January 2018

NPS COLLABORATION MEETING

Summary

- Study context
- General design
- Components / Details
- Monitoring system
- Radiation curing
- Maintenance
- Mechanic (structure/Tests in progress)
- Shielding
- Cooling
- Cabling / Electronic
- Planning

STUDY CONTEXT


- Study context

- General design
- Components / Details
- Monitoring system
- Radiation curing
- Maintenance
- Mechanic
- Shielding
- Cooling
- Cabling / Electronic
- Planning

Summer 2017: Start of the project (for technical part)

- First discussions and drawings
- First objective: position of the LEDs and the fiber (Front vs Back)

Experiment in the Hall C

Experimental setup in the hall C

IPNO is in charge of the mechanical design, the instrumental tests, construction and installation at Jlab of the new calorimeter frame.

Study context

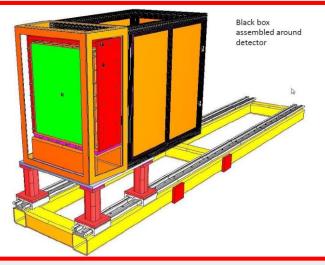
Mechanic Shielding

Cooling

Planning

General design Components / Details Monitoring system Radiation curing Maintenance

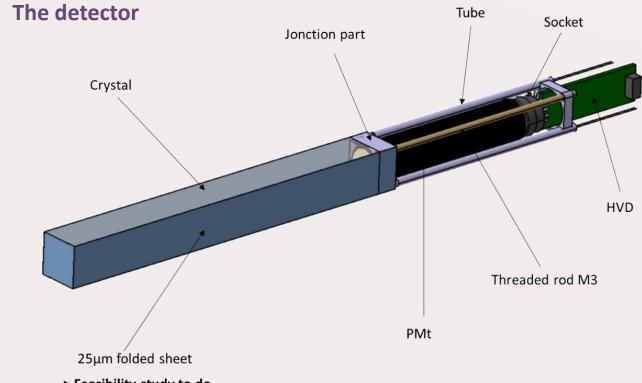
Cabling / Electronic


GENERAL DESIGN

Experimental setup in the hall C

The calorimeter should be integrated into the mechanical structure (already designed)

We will modify some parts if necessary (discussion with Mike Fowler).



Structure on rails / Design by Mike Fowler

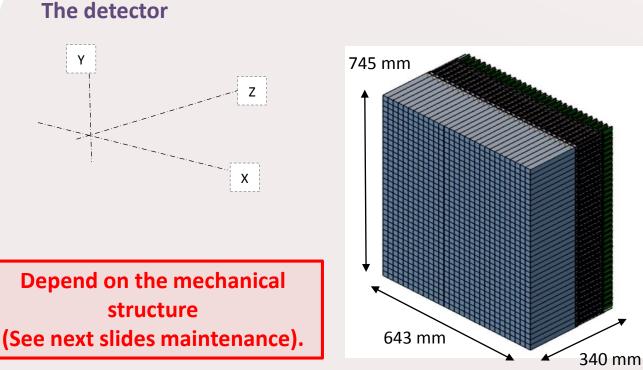
COMPONENTS / DETAILS

lundi 22 janvier 2018

-> Feasibility study to do

Numbers of crystals :	1116
Positioning :	Horizontal=31 / Vertical=36
Material :	PbWO ₄ (density= 8,28 g/cm ³)
Size :	20.50 ^{+/-0.05} x 20.50 ^{+/- 0.05} x 200.00 ^{+/- 0.15} mm ³
Mass :	696 g
Production :	SICCAS / CRYTUR

- General design
- Components / Details
- Monitoring system
- Radiation curing
- Maintenance
- Mechanic
- Shielding
- Cooling
- Cabling / Electronic
- Planning



COMPONENTS / DETAILS

lundi 22 janvier 2018

Study context

- General design
- Components / Details
- Monitoring system
- Radiation curing
- Maintenance
- Mechanic
- Shielding
- Cooling
- Cabling / Electronic
- Planning

Number of crystals:	31(Horizontal X) by 36(vertical Y)
Tolerance :	20.45mm < Crystal < 20.55mm
Sheet copper/brass:	25 μm

COMPONENTS / DETAILS

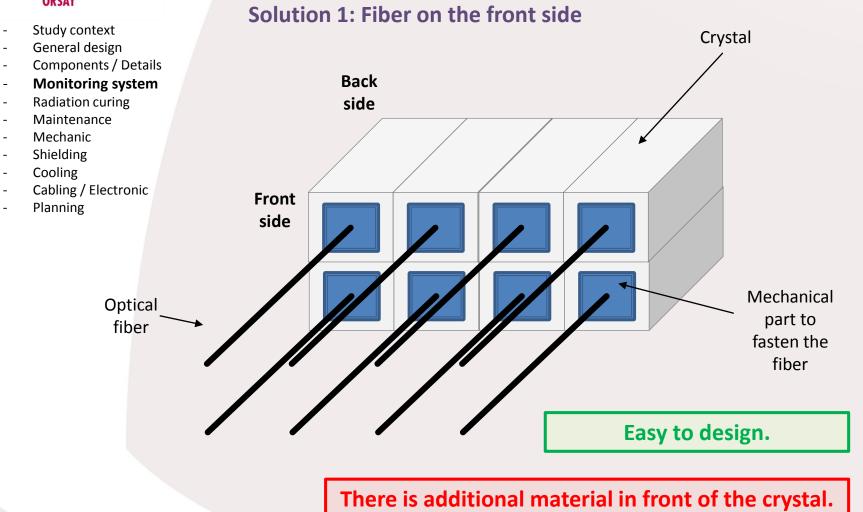
lundi 22 janvier 2018

The wrapping

Study contextGeneral design

- Components / Details

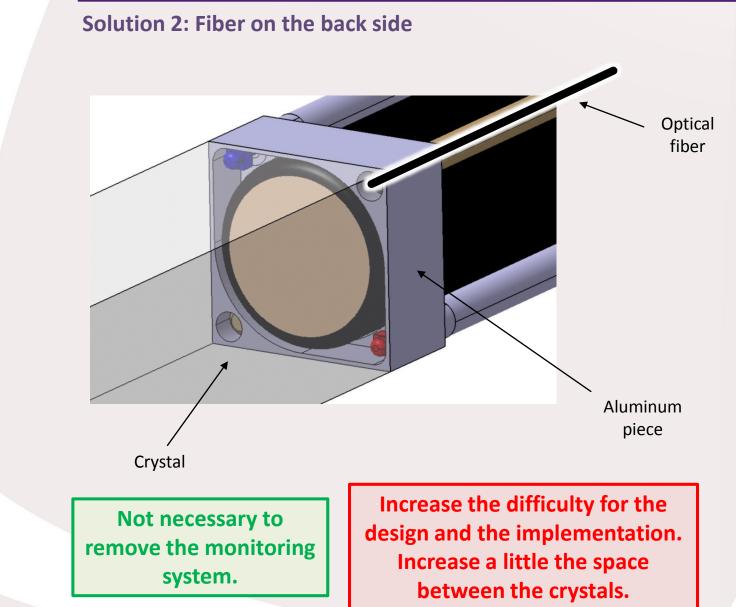
- Monitoring system
- Radiation curing
- Maintenance
- Mechanic
- Shielding
- Cooling
- Cabling / Electronic
- Planning


Two options are considered: Teflon and VM2000

	Teflon	VM 2000
Implementation	Easy	Hard
Efficacy	Good	Very good
Cost	Low cost	Expensive
Thickness	Random	65 μm
Repeatable	Bad	Good
Radiation damage	Very bad	Good

Wrapping with VM 2000 (Thickness= 65 µm) looks better

MONITORING SYSTEM



- Study context
- General design
- Components / Details
- Monitoring system
- Radiation curing
- Maintenance
- Mechanic
- Shielding
- Cooling
- Cabling / Electronic
- Planning

MONITORING SYSTEM

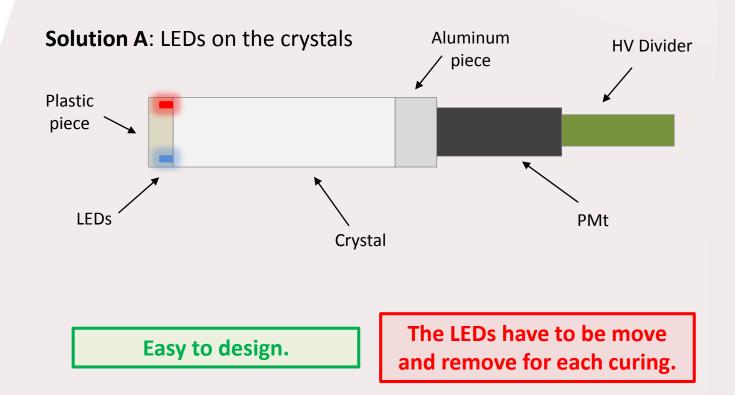
lundi 22 janvier 2018

- Study context
- General design
- Components / Details
- Monitoring system
- Radiation curing
- Maintenance
- Mechanic
- Shielding
- Cooling
- Cabling / Electronic
- Planning

MONITORING SYSTEM

Requirements for the choice

	Solution 1	Solution 2
Space between crystals	Good	Not bad
Implementation	Easy	Not bad
Radiation damage	Bad	Good
Cost	Bad	Good
Cabling	Bad	Good
Maintenance	Good	Not bad
Thickness of material for particle	Bad	Very good

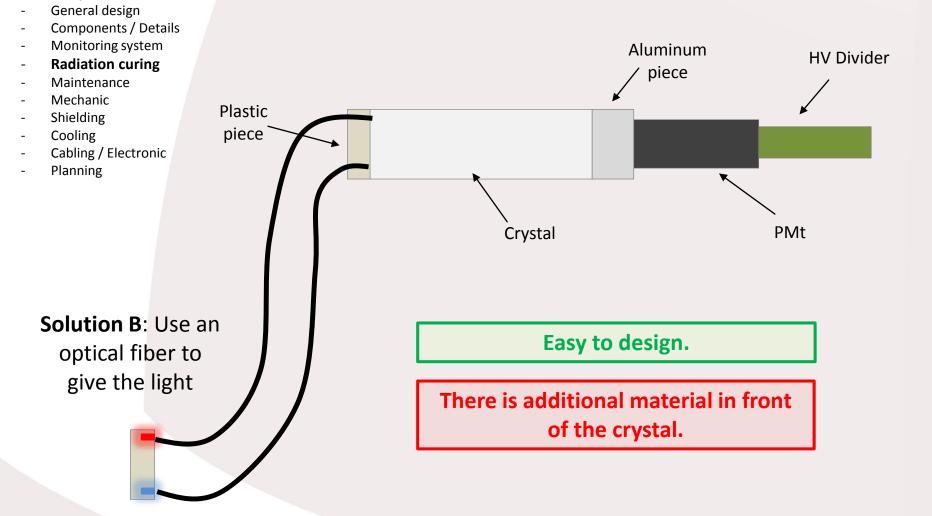


- Study context
- General design
- Components / Details
- Monitoring system
- Radiation curing
- Maintenance
- Mechanic
- Shielding
- Cooling
- Cabling / Electronic
- Planning

RADIATION CURING

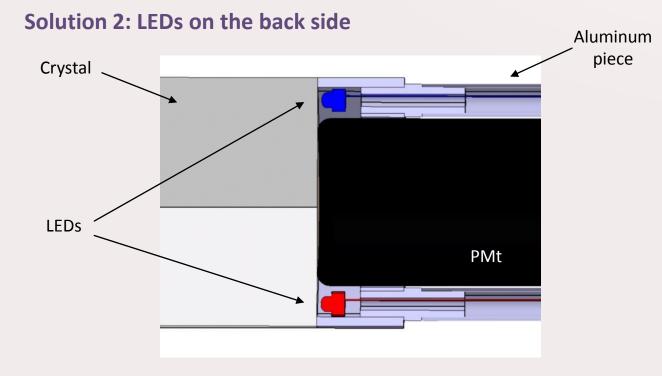
lundi 22 janvier 2018

Solution 1: LEDs on the front side



Study context

RADIATION CURING


Solution 1: LEDs on the front side

- Study context
- General design
- Components / Details
- Monitoring system
- Radiation curing
- Maintenance
- Mechanic
- Shielding
- Cooling
- Cabling / Electronic
- Planning

RADIATION CURING

Not necessary to remove the monitoring system. Increase the difficulty for the design and the implementation. Increase a little the space between the crystals.

- Study context
- General design
- Components / Details
- Monitoring system
- Radiation curing
- Maintenance
- Mechanic
- Shielding
- Cooling
- Cabling / Electronic
- Planning

RADIATION CURING

Requirements for the choice

	Solution 1	Solution 2
Efficiency of the curing	Test in progress	Test in progress
Implementation	Easy	Not bad
Radiation damage	1A- Very bad	Good
	1B- Good	
Cost	Bad	Good
Cabling	Bad	Good
Maintenance	Good	Not bad
Thickness of material for particle	Bad	Very good
Space between crystals	Good	Not bad

- Study context
- General design
- Components / Details
- Monitoring system
- Radiation curing
- Maintenance
- Mechanic
- Shielding
- Cooling
- Cabling / Electronic
- Planning

This point impact the mechanical design.

Question:

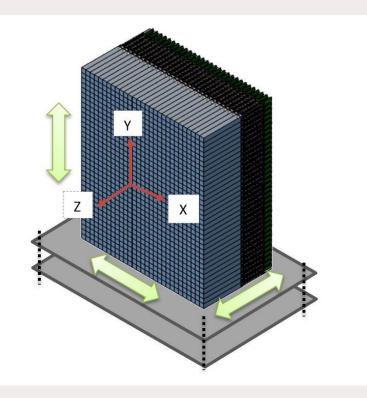
-> What is the problem if one PMt doesn't work?

To change a PMt or an electronic components (LEDs):

1- With mechanical structure (example on the next slide)
 -> Possibility to remove any detector (Crystal/PMt/Electronic)
 Advantage: maintenance convenient and quick
 Problem: Increase the distance between the crystals

2- Without mechanical structure

-> Necessary to remove all the detectors on the top of the calorimeter Advantage: Minimize the distance between crystals Problem: Increase time to change a deficient part and make the maintenance hard

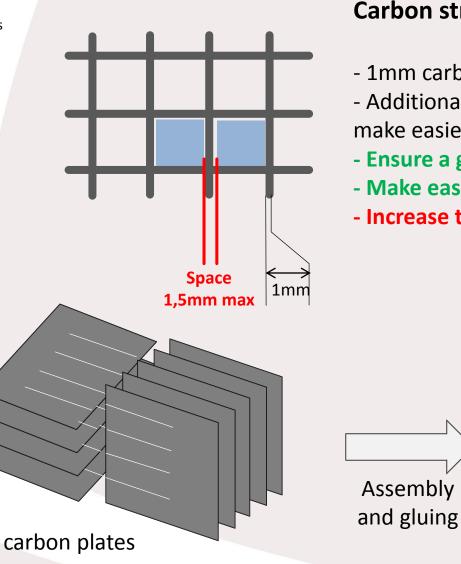


- Study context
- General design
- Components / Details
- Monitoring system
- Radiation curing
- Maintenance
- Mechanic
- Shielding
- Cooling
- Cabling / Electronic
- Planning

MECHANIC

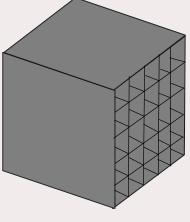
Adjustment

General tolerance for the positioning of the calorimeter is about 3mm.


It is better to have an adjustment and a way to control the position of the calorimeter (laser or theodolite). *Discussions with Mike Fowler.*

- Study context
- General design
- Components / Details
- Monitoring system
- **Radiation curing**
- Maintenance
- Mechanic
- Shielding
- Cooling
- Cabling / Electronic
- Planning

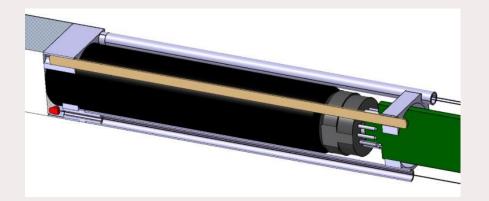
MECHANIC


Mechanical structure

lundi 22 janvier 2018

Carbon structure

- 1mm carbon plate thickness
- Additional space around the crystal to make easier the mounting
- Ensure a good positioning of the crystals
- Make easier the maintenance
- Increase the space between the crystals


"Alveolar" structure

- Study context
- General design
- Components / Details
- Monitoring system
- Radiation curing
- Maintenance
- Mechanic
- Shielding
- Cooling
- Cabling / Electronic
- Planning

MECHANIC

Tests in progress

Simulation (resistance of materials)

To optimize the size of the carbon structure to reduce the space between crystals

Production

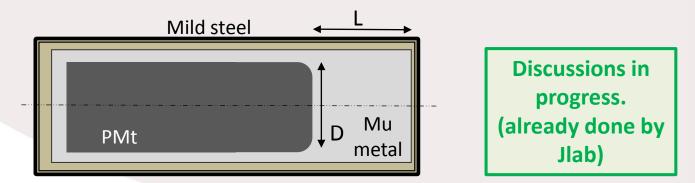
3D printing (plastic) of the junction part to test the assembly **Results: little surface for the assembly of the mechanical part**

PROBABLY NECESSARY TO INCREASE THE SIZE OF THE PIECE IF WE WANT TO PLACE THE LEDS ON THE BACK SIDE

- Study context
- General design
- Components / Details
- Monitoring system
- Radiation curing
- Maintenance
- Mechanic
- Shielding
- Cooling
- Cabling / Electronic
- Planning

SHIELDING

lundi 22 janvier 2018


Magnetic field : 25 Gauss

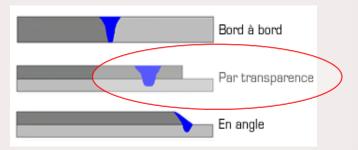
Kind of shielding : Passive (Mild steel and mu-metal)

Location of the shielding: AROUND EACH PMt vs AROUND THE CALORIMETER

Mu metal (rolled sheet) around the PMt:
 Probably enough but The front part of the PMt is not shielded
 Necessary to check the direction of the magnetic field

- Mild steel can't be around each PMt (increase the space between crystals)
- -> Mild steel all around the calorimeter (3mm thick)

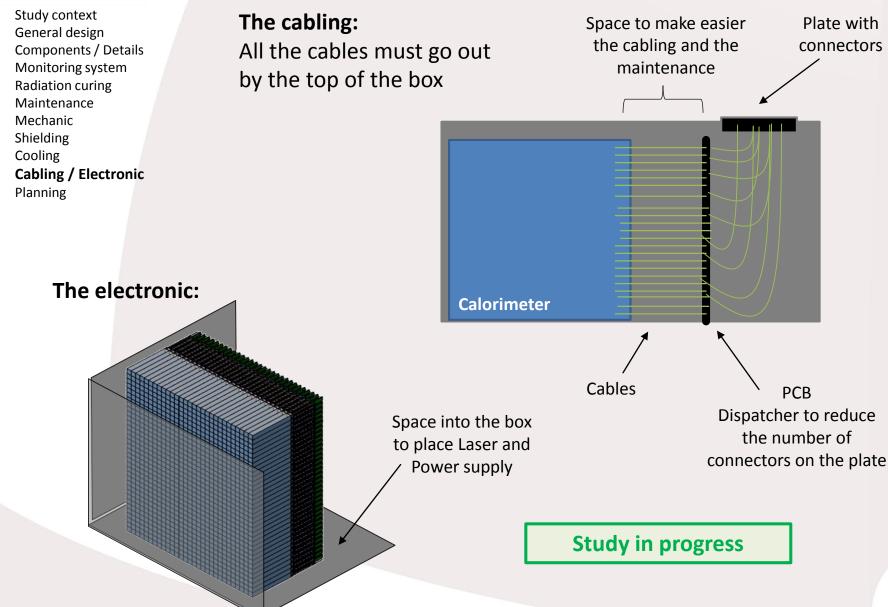
Recommended by Hamamatsu ("PMT_handbook_v3aE" etc...)



- Study context
- General design
- Components / Details
- Monitoring system
- Radiation curing
- Maintenance
- Mechanic
- Shielding
- Cooling
- Cabling / Electronic
- Planning

COOLING	lundi 22 janvier 2018
Power to dissipate :	600 W max (0,5 W/channel)
Temperature :	18 °C
Stability :	+/- 0.1 °C
Technical solution considered	-
Abb	the copper plate machined

Copper plate machined


Machining of the circulation for the water -> Thermic simulation to optimize the good shape

CABLING / ELECTRONIC

lundi 22 janvier 2018

PLANNING

- Study context
- General design
- Components / Details
- Monitoring system
- Radiation curing
 Maintenance

Maintena			2017						2018								2019								
Mechanic				ΑM	ll	Α	s o	N	D	JF	: M	Α	МJ	IJ	A S	0	ND	J	FΜ	AN	ΙN	JA	S	ΟΝ	D
Shielding		First discussions	IPNO																						
Cooling		Start of the study	JB																						
Cabling / E		Pre study and first design	JB																						
Planning		COLLABORATION MEETING	IPNO + Jlab																						
		General design	ER(80%) + JB(20%)																						
		Drawings	ER								L			Π											
	Technical	Construction												Π											
		Assembly at IPNO and tests																							
		Shipping to Jlab												Π											
		Assembly at Jlab and tests																							
		Cosmic test																							
		Commissioning at Jlab																							
		R&D monitoring system																							
		R&D radiation curing																							
	Instrumental	Prototype for test																							
	Mechar	Mechanic for irradiation tests																							
		Irradiation tests																							
																		Π					Π		

Interface with other parts:

- -> Check the space available into the hall C
- -> Check the way to measure the positioning of the calorimeter
- -> Connection to the water for the cooling (kind of

Main objective is to choose the location of the monitoring system and the radiation curing -> IMPACT THE DESIGN:

MECHANICIAN: Place a structure to make easier the assembly and maintenance.

VS

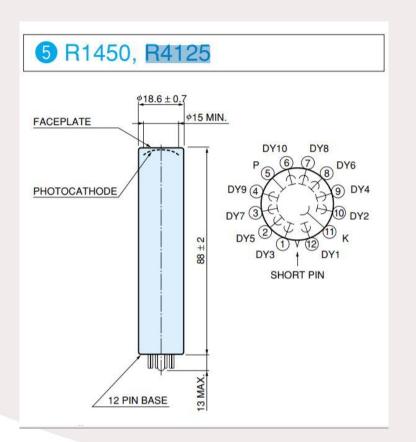
PHYSICIST: Reduce the space between crystals.

Work in progress:

- -> Wrapping
- -> Shielding
- -> Instrumental tests (monitoring and curing)
- -> Radiation test on crystals at the LPC
- -> Electronic and cabling
- -> Mechanic (Design and cooling)

lundi 22 janvier 2018

DISCUSSIONS / QUESTIONS

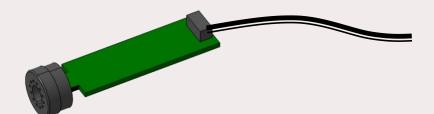

BACK UP SLIDES 1 / PMT

Référence PMt :

Hamamatsu R4125

Taille :

3/4 de pouce (*18,6 mm*)



Design :

Dimensions extérieures :

Yerevan Institute

70mm x 17,5 mm x D=18mm

BACK UP SLIDES 3 / TESTS AT LPC

lundi 22 janvier 2018

Rayon minimal source/cristal :	50 cm							
Rayon maximal source/cristal :	100 cml							
Matière des boites (+couvercle étanche) :								
Nombre de cristaux à tester :		300						
Nombre maxi de cristaux par irradiation :								
Nombre mini de cristaux par irradiation :								
Durée d'irradiation :								

