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Qutline

® EIC physics with (far-)forward nucleon tagging
® focusing on protons with Roman Pots
® [nteraction Region integration

® Requirement and considerations for
measurements with Roman Pots



EIC physics and measurements
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® Defining exclusive reactions in ep/eA:
®ep: reconstruction of all particles in (diffractive) event
including scattered proton with wide kinematics coverage
®cA: identify with rapidity gap. need wide rapidity coverage
[ HCal for 1<n<4.5]
® |dentifying coherence of nucleus in diffractive eA:
® ~|00% acceptance for neutrons from nucleus break-up
® Sampling target in e+3He,d with spectator nucleons

® Accessing event geometry in semi-inclusive eA with evaporated nucleons
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Forward protons in diffraction

30 * Scattered with ~O(mrad): Need a detector
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15 GeV on 50 GeV close to the beam - Roman Pot to detect

1w e |arge angle (high-t) acceptance mainly
& ey om 100 ey y limited by beam aperture [t~p72~p20?]
* Small angle (low-t) acceptance limited by

10 beam envelop (~<100beam)

10
15 GeV on 250 GeV

l . 1 1 'l. f:-c'.l':'sl. Il . 'l

'-'I 1 1 1 1 1 L
100 150 200 250
proton momentum [GeV/c]

)]

* Reconstruction resolution limited by

proton scattering angle [mrad]
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— beam angular divergence (~O(100prad)),
emittance

— uncertainties in beam offset, crossing,
transport, detector alignment, vertex
reconstruction resolution

— at RHIC
« Op/p ~ 0.005
« dt/t ~0.03Nt

— in addition, effect of crab crossing (expected
to be << beam divergence) need to be
simulated
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Measurement

DVCS - 20 GeV x 250 GeV - 10 fb™
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Physics observable (cross-section vs impact parameter)

DVCS - 20 GeV x 250 GeV - 10 fb™

Plots from
EIC White Paper:
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Requirement:

JL, . =10fb-!

0.18 < p, (GeV) < I.3
0.03 < [t| (GeV2)< |.6

fL,.=10fb-
0.44 < p(GeV) < 1.3

fL,.=10fb-
0.18 < pr (GeV) < 0.8



As simulated for High Divergence without cooling
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® Integrating requirements for hadron beam direction
® Forward Detector (6 - 20 mrad)

® Neutron detector ZDC (0 to 4 mrad)
® Roman Pots (sensitive | to 5 mrad)
®clectron and hadron polarimetry at separate IR @ IP-12
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Events

Events

275 x 18 GeV pt acceptance for forward scattered protons from

~100 away frbm beam line exclusive reactions

_ 20mrad vacuum pipe
BO Si tracker

X
=)
IIII|IIII|IIII|IIII|IIII|IIII|IIII|IIII|IIII|III

—06 08 1 72 1.4
DVCS proton Pt [GeV/c]

o
S
N
o
EN

|
I
|
|
I
v

450
400
350
300
250
200
150
100

50

100 x 10 GeV

first quad aperture &
E beam pipe

" M, | ¢ Plots: HD (high divergence) mode DVCS.20 GeV x 250 GeV - 1045
0 .1 12 14 e Acceptance gap between RP and B0 \

will be further optimized
Accept 0.3 < pt< |.3 GeV and higher ok <
- Low pr-part can be filled in with HA

HA (high acceptance, smaller beam 10 HD
divergence) running mode

(=)
(=)
N
_Q_
BN
S
o)}

-
c.‘

350

do/ditl pb/GeV?

41 x 5 GeV

300
250

200
vacuum system

150 ~20mrad cone

100

B0

50

0 02 04 06 08 1 12 14 16
2
ol [t GeV

08 1 12 14
DVCS proton Pt [GeV/c]

QO

—02 04 06




Proton acceptance with JLEIC
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IR Layout

Two forward charged hadron detector regions:
- Region 1: Small dipole covering scattering angles from 0.5 up to a few degrees (before
quads) “;2
- Region 2: Far forward, up to one degree, for particles passing through (large aperture) <§
accelerator quads. Use second dipole for precision measurement. (Hi Res)
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* Crucial for identifying processes

with a neutron “target” [e(p)+n] in
light ions - d, 3He

* Spectator neutron (<~4 mrad)
can be identified by a calorimeter
at beam rapidity (zero degree
calorimeter)

* Tagging spectator protons from d,
SHe

* Relying on separation from
magnetic rigidity (B,) changes
SHe: p = 3/2:1 dip = 2:1

* Momentum spread mainly due

to Fermi motion + Lorentz
boost



spectators in e+3He
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Common detector RP be
utilized for tagging forward
proton from diffraction and the
spectator protons from 3He!

measurement can be done with
RPs + forward detector + ZDC

Shown example distribution at
fixed RP locations at eRHIC IR

Detectors can be configured to
optimize the acceptance



* Integral part of IR design
* beam divergence, aperture limit, multiple running mode/beam parameters
e optimized location for optimal performance and acceptance
e Coverage
* need to measure diffractive protons in beam envelop - aperture limit with full ¢p acceptance
* need wide coverage in momentum for tagging spectator protons for light ions
* Operation
e operation no disturbance to the beam, routine operation
* run simultaneously with normal operation for high luminosity sampling (ref: RHIC, LHC)
* Detector technology
* tracking silicon/pixel + timing/triggering counter (ref: latest development at LHC)
* space constraint for full ¢(p coverage in horizontal: 2d-move

e geometrical configuration/size for maximal coverage for various energies



Summary

Forward nucleon tagging crucial part of EIC physics

Requirement for forward detectors are integrated in
the IR design

The IR with the forward detector system (Roman Pot)
can cover physics needs for wide ranges of nucleon
energies in ep and eA (50 - 275 GeV/nucleon)

More detailed simulation and detector design study
with further optimization underway



