

SiPM Specs Backward ECAL

Tanja Horn

THE CATHOLIC UNIVERSITY OF AMERICA

Performance requirements for backward ECAL

Goals:

- Electron/pion separation
- > Improve electron resolution at large $|\eta|$
- Measure photons with good resolution
- \blacktriangleright Separate 2- γ from π^0 at high energy

Detector requirements established and documented during the Yellow Report exercise

Requirements:

- Energy resolution: $2-3\%/\sqrt{E} + (1-2)\%$
- Pion suppression: 1:10⁴ (together with other PID detectors)
- Minimum detection energy: > 100 MeV

	PERFORMANCE REQUIREMENTS	
Backward EMCAL		
P-DET-ECAL-BCK.1	System shall cover pseudo rapidity down to -3.5.	<u>F-DET.2</u> <u>F-DET-ECAL-BCK.1</u>
P-DET-ECAL-BCK.2	Energy resolution in the most backward region shall be s(E)/E ~ (2- 3)%/sqrt(E) + (1-2)%; in less backward region shall be <7%/sqrt(E) + (1-2)%.	F-DET.2 F-DET-ECAL-BCK.3
P-DET-ECAL-BCK.3	System shall have high power for e/pi separation down to 1 GeV/c.	F-DET-ECAL-BCK.3
P-DET-ECAL-BCK.4	System shall have high granularity and be capable of distinguishing two showers with opening angle down to 0.015 (=>tower size).	F-DET-ECAL-BCK.5
P-DET-ECAL-BCK.6	System shall have low material budget on the way from the vertex: <5%X0 in the 1st half a way, or <10%X0 on the second half a way, or <30%X0 just in front of EMCal (within 10cm).	F-DET-ECAL-BCK.6
P-DET-ECAL-BCK.7	A cooling system shall be provided if PWO crystals are used.	F-DET-ECAL-BCK.7

Requirements documented by the EIC project

Charge Qn 1

Context for SiPM Specifications

In general, for high-precision electromagnetic calorimetry, the following are of relevance for readout selection:

- Operational in the expected magnetic field
- Large dynamic range to detect particles from 50 MeV to 15 GeV and good linearity
- Low dark current to trigger signals close to the single p.e. amplitude of the radiator
- Compatible with streaming readout data acquisition method
- Photosensor curve should be in agreement with crystal transmittance spectrum

Silicon Photomultipliers (SiPMs) meet the requirements for the backward EMCal

Anticipated SiPM model for backward ECAL

					6.	.85	×				Charge	Qn 3
HAMAMATS	E S S	- I	PRELIMIN	ARY								
	MPPC		Feb.	3, 2022				-				
SPECIFICATI	ON SHEET S14	1160-60	10PS/601	5PS			35	Electrical and optical characteristics Parameters	s (Typical va Symbol	alue, Ta = 25 deg C, Vr S14160-6010PS	= Vop unless otherw S14160-6015PS	vise noted) Unit
							7	Spectral response range	λ	290 t	o 900	nm
						1 X		Peak sensitivity wavelength	λр	46	50	nm
							,	Photon detection efficiency at $\lambda p *2$	PDE	18	32	%
Parameters	S14160-6010PS	S1	4160-6015PS	Unit			¥	Breakdown voltage	Vbr	38 -	-/- 3	V
Effective photosensitive area	6.0 10	0 × 6.0	15	mm ²				Recommended operating voltage *3	Vop	Vbr + 5.0	Vbr + 4.0	V
Number of pixels	359011		159565	-		I		Dark count rate	DCR	Тур. 3.0	/ Max. 10	Mcps
Window	Silico	one resin		-				Terminal capacitance at Vop	Ct	25	00	pF
Window refractive index		1.57		-				Gain	M	1.8 x 10 ⁵	3.6 x 10 ⁵	-
Package	Surface	mount type		-						1.0 × 10	3.0 × 10	
								Temperature coefficient of Vop	ΔIVop	3	4	mV/°C

Backward ECAL readout :

- ➤ 4 SiPM per crystal (S14160-6010PS)
- > A total of 1.4M pixels per crystal: sufficiently large dynamic range
- > Photon detection curve in agreement with crystal transmittance

EEEMCAL SiPM Specifications

SiP	Μ	SiPM	stability	Pre-	amp	FEB, RDO			
SiPM Size	6x6 mm2	Overvoltage	+5 V	Linearity	< 0.5 %	SiPM bias monitoring	Yes		
Voltage	40-46 V	Stability required [mV]	For FE design, not an individual SiPM	Gain stability	< 0.5 %	Temperature monitoring	Yes		
Array of SiPM	2x2		specification For FE design,	Peak time	20 ns	FEB on detector	Yes		
(summing)		Bias voltage accuracy	not an individual SiPM			FEB	Between runs		
Capacitance/ channel	2.5 nF		specification For FE design,	Charge resolution	14-bit				
		Bias voltage current	not an individual SiPM	Time-hit		distance	3-5m		
Pixel/channel	160-360k		specification Bias voltage	resolution	(TBD) 5 ns	RDO on	No		
Dynamic range	10-10,000pC	Temperature compensation	temperature compensation would be	Double pulse resolving	10 ns(?)	RDO location	TBD		
			preferred						

See Calorimetry WG discussion on July 12:

https://indico.bnl.gov/event/20029/contributions/78495/a ttachments/48567/82578/20230712CaloMeeting.pdf For high-precision calorimetry one needs to pay a lot of attention that all pieces works together even after the SiPMs are in hand

SiPM tests at Universities

- Calorimeters at EIC require photo-sensors with a very large dynamic range expanding more than 3 orders of magnitude.
 - Both the Hamamatsu S14160-6015 and S14160-6010, high density, large array SiPMs were tested at IJCLab-Orsay and were shown to have linearity within 2% over 3 orders of magnitude and were within statistical expectations

☐ The SiPM must also detect at low energies

- Requires low dark current in order to trigger signals close to the single p.e. amplitude
- These SiPM waveforms were measured using a low intensity LED and show a clear separation between the individual p.e. signals allowing for valid small signal identification

Charge Qn 3

JLab SiPM tests and prototype

HE CATHOLIC UNIVERSITY DF AMERICA

SiPM matrices have been characterized on the test bench

- PCBA with SiPMs, thermal correction circuit, pre-amp circuit, coax and connectors for LV and SiPM bias
- Test setup to measure laser pulse response, signal linearity, PCB dynamic range, scaling of the PCB output with multiple SiPMs

Beam test facility with tagged photon beam up to 4-5 GeV

Technique demonstrated successfully with eRD105 (studies concluded) can be adapted for EEEMCAL prototype tests

Prototype Beam Test Campaigns at JLab

eRD105

3x3 prototypes (2022)

connectors

eRD105

With SiPM coupled to homogeneous radiators

3x3 prototypes (2022)

eRD105 5x5 prototypes (2023) 25 scintillating glass blocks 2 x 6x6mm2 50um Hamamatsu mounted on a PCB

8

Charge Qn 2

Mechanical design

- Advanced preliminary design of mechanical assembly and installation procedure
- SiPM readout using short cables to electronics sitting behind the crystals (inside cooled boxes)

SiPM Quality Assurance Protocol

- Quality assurance on the SiPM and
 SiPM assemblies builds on the process
 developed for previous prototype tests
 - o Linearity
 - o Dark noise variation
 - PCBA testing (signal response, linearity, dynamic range)
- No special requirements on the vendor beyond providing the characteristics that were provided with purchases for previous prototype tests
- 2. Data in each tray SiPM characteristics provided by vendor 514160-2671 Type No. Shipping date 6/1/2023 Ta[deqC] 25 Vop[V] Position No. Tray No. Serial No. Id at Vop[µA] Vop=Vbr+4V 230601-01 41.87 0.302 41.78 0.305 2 42.14 0.279 0.277 41.99 4 41.66 0.339 41.71 0.342 41.78 0.342 8 42.48 0.290 42.24 0.361 q 42.02 0.287 10 10 11 42.31 0.290 11 12 42.26 0.294 12 13 13 41.73 0.322 0.274 14 42.05 14 41.83 0.319 15 15 0.327 16 16 41,79 0.373 41.77 17 17 0.262 18 18 42.51 0.293 19 19 42.04 20 20 41.89 0.320 0.285 21 21 42.37 0.301 22 22 42.28 0.329 23 23 41.89 0.305 41.73 24 24 0.291 25 25 42.02 0.282 26 26 42.16 0.324 27 27 41.81 41.83 0.348 28 28 41.78 0.361 29 29 0.281 30 30 42.44 0.288 41.95 31 31 0.296 32 32 41.86 0.263 42.47 33 33 34 34 42.35 0.286 35 35 41.78 0.360 0.341 36 36 41.96 37 37 42.22 0.302 38 38 41.88 0.304 39 39 41.81 n 40 41.74 0 40 CATHOLIC UNIVERSITY OF AMERICA (US) 41 41 42.13 0 S14160-2671 42 42 41.94 43 43 42.43 0 44 42.39 n 44 45 45 42.11 n 0 46 41.95 46 41.87 0 47 47 48 42.21 0 48 40 40 41 06 Tray datasheet
 - HAMAMATSU PHOTON IS OUR BUSINES Ship To: Physics Departs Hannan Hall RM 212 620 Michigan Ave NE Washington, DC 20064 CERTIFICATE OF COMPLIANCE 009936-03142 Customer PO Numbe Customer Part N Customer Part Descriptio S14160-2671 natru Part Numbe Number of Pieces Shippe SOPS-235245 Packing Slip No and services listed above furnished pursuant to this purchase or have been produced and assembled, inspected and tested in full accordance with all applicable specifications. It is also cert devices in this shipment are part of the shipment covered by Customer Part N h the Date: 2023/06/0 Matt Matsumoto Hamamatsu Corporation Quality Assurance Manage

Charge Qn 7

Certificate of compliance

SiPM Quality Assurance Documentation

A1																			
	A	В	с	D	E	F	G	н	1	J	к	L	м	N	0	P	Q	R	S
1		1	PCB parameters						SiPM characterization		ion			Refe	erence for cos	mics	fADC parameters		
2	Glass number	ID PCB	V bias *	I dark	Position inside detecto	Bias setting	Power supply ch	ar Amplifier	Amplitude (m)	/) Area (pWb)	RMS	LY (phe/MeV)	Measured baseline	Amplitude	Rise time	Signal width*	Baseline	ET	Slot
3	10*	Pann 1 PCB 10	40,34	1,45/1,54	1	40,34	3J2	A1	0	.11 24.5							155,521	20	
4	16*	Pann 1 PCB 18	40,41	1,65/1,55	2	40,41	3J3	A2	0	.10 24.4							160,578	20	
5	17*	Pann 1 PCB 17	40,42/40,41	1,47/1,53	3	40,41	334	A3	0	.12 20.2							131,529	20	
6	13	3 Pann 1 PCB 6	41,29/41,27	1,13/1,05	5 4	41,29	335	A4	0.11 !	19.5		3.76(-0.3, +0.5)	100uV	5 mV	50ns	700ns	148,13	20	
7	7**	Pann 1 PCB 8	40,35	1,5/1,47	5	40,35	532	A5	0	.12 23.3							195,22	20	
8	18	8 Pann 2 PCB 2	40,4	1,54/1,45	5 6	i 40,4	533	A6	0	.10 24.1		3.28(-0.3, +0.3)	100 uV	3.3 mV	50 ns	s 700 ns	183,816	20	
9	6	5 Pann 1 PCB 4	41,36/41,37		7	41,3	534	A7	0	.09 21.7		3.46(-0.3, +0.408)	100uV	3 mV	50 ns	s 600ns	183,137	20	
10	4	4 Pann 1 PCB 3	41,26	1,13/1,16	i 8	41,28	535	A8	0	.14 21.4		3.6(-0.3, +0.446)	100uV	3 mV	60 ns	s 700 ns	188,672	20	
11	5	5 Pann 2 PCB 1	40,4	1,70/1,62	2 9	40,4	732	A9	0	.10 19.7		3.92(-0.4, +0.47)	100uV	4 mV	50ns	s 700ns	184,657	20	
12	11	1 Pann 1 PCB 2	41,38	1,00/1,30	10) 41,4	7]3	A10	0.10 !	18.1		4.34(-0.4, +0.5)	100uV	3.8mV	50ns	s 700ns	177,158	20	
13	13*	Pann 1 PCB 7	42,25/40,23	1,07/4,54	11	. 41,31	. 7]4	A11	0	.10 2	0						188,448	20	
14	2	2 Pann 1 PCB 11	40,34	1,65/1,64	12	40,34	735	A12	0	.11 17.05 !		4.29(-0.3, +0.425)	100uV	5 mV	60 ns	s 700 ns	184,569	20	
15	10) Pann 2 PCB 7	40,37	1,59/1,63	3 13	40,36	8J2	A13	0.02 ?	21.6		4.32(-0.8, +1)	100 uV	4 mV	50 ns	s 700 ns	162,937	20	
16	3	3 Pann 1 PCB 1	41,27	1,07/1,14	14	41,27	813	A14	0	.12 18.6		4.07(-0.3, +0.447)	100uV	3 mV	60 ns	s 700 ns	180,454	20	
17	12*	Pann 1 PCB 9	40,34/40,35	1,52/1,70	15	40,35	834	A15	0	.08 23.9							180,808	20	
18	14	4 Pann 1 PCB 14	40,35	1,53/1,54	16	i 40,35	835	A16	0	.09 25.2		3.41(-0.4, +0.5)	100 uV	3.8 mV	50 ns	s 700 ns	180,749	20	
19	7	7 Pann 2 PCB 6	40,38	1,52/1,52	2 17	40,38	21J2	A17	0	.09 19.5		4.05(-0.4, +0.534)	100uV	4 mV	50ns	s 700ns	203,777	20	
20	ġ	Pann 1 PCB 5	41,31/41,29	1,13/1,09	18	41,3	21J3	A18	0	.12 20.1		4.25(-0.5, +0.7)	100 uV	4 mV	60 ns	s 700 ns	211,174	20	
21	8	3 Pann 2 PCB 4	40,39	1,70/1,68	3 19	40,39	21J4	A19	0	.11 20.5		3.64(-0.3, +0.403)	100uV	4 mV	50ns	s 700ns	191,734	20	
22	14*	Pann 1 PCB 12	40,20/40,17	1.04/1.05	20	40,19	21J5	A20	0	.10 2	0						187,46	20	
23	15	5 Pann 2 PCB 3	40,39	1,41/1,52	2 21	40,39	23J2	A21	0	.08 23.2		XXXX	100 uV	3 mV	50 ns	s 700 ns	218,991	20	
24	16	5 Pann 1 PCB 15	40,35/40,36	1,55/1,64	1 22	40,35	23J3	A22	0	.08 19.2 !		4.19(-0.3, +0.4)	100 uV	3.6 mV	50 ns	s 600 ns	234,888	20	
25	11*	Pann 1 PCB 13	40,2	4,31/4,29	23	40,2	2334	A23	0	.10 2	0						176,001	20	
26	19	Pann 1 PCB 16	40,36	1,46/1,39	24	40,36	2335	A24	0	.10 24.5		3.13(-0.3, +0.3)	100 uV	3.3 mV	60 ns	s 700 ns	203,348	20	
27	15*	Pann 2 PCB 5	40,38	1,39/1,52	25	40,39	44J2	A25	0	.08 23.6							218,576	20	
		1	* Bias voltage set			1					1								/

- SiPM quality assurance results will be documented in a central location, e.g., a master spreadsheet or Wiki
 - SiPM assemblies may be tracked by ID

		Sample											
												Sample	
		S1	S2	S3	S4	S5	S6	S7	S8	S9	S10	Avg.	
	ND	Vpp	Vpp	Vpp	Vpp	Vpp	Vpp	Vpp	Vpp	Vpp	Vpp		
	Filter												
Transmittance	(OD)											Avg V	
100%	0	0.52	0.528	0.6	0.536	0.592	0.544	0.56	0.568	0.52	0.448	0.542	
79%	0.1	0.44	0.456	0.408	0.424	0.472	0.368	0.44	0.584	0.504	0.496	0.459	
63%	0.2	0.392	0.416	0.384	0.432	0.392	0.384	0.44	0.472	0.392	0.392	0.410	
50%	0.3	0.272	0.234	0.26	0.288	0.24	0.204	0.276	0.214	0.264	0.294	0.255	
40%	0.4	0.248	0.228	0.202	0.22	0.262	0.264	0.236	0.22	0.208	0.226	0.231	
32%	0.5	0.198	0.204	0.216	0.226	0.288	0.19	0.27	0.222	0.202	0.256	0.227	

Charge Qn 7

11

SiPM Timeline in the EEEMCAL

- Backward ECAL installation window integrated into the overall schedule
- Photosensor procurement and signal processing DAQ tasks are aligned with this overall schedule

12

Summary Backward ECAL

- The Backward ECAL technical performance requirements are complete and understood
 Plans for achieving Backward ECAL detector performance and construction are in place.
 The Backward ECAL design and resulting SiPM specifications meet the performance requirements for high precision calorimetry with scintillating crystals
- The fabrication and assembly plans for the Backward ECAL system are consistent with the overall project and detector schedule
- Advanced preliminary design of mechanical assembly and installation procedure in place
 QA considerations have been incorporated in Backward ECAL procurement planning
 A procurement approach and schedule have been developed