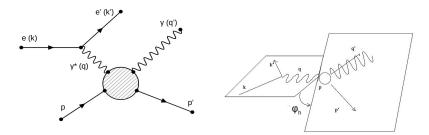

Recoil proton polarization in DVCS

Olga Bessidskaia Bylund, Maxime Defurne, Pierre A. M. Guichon

CEA Saclay, IRFU, DPhN

2nd of February 2022

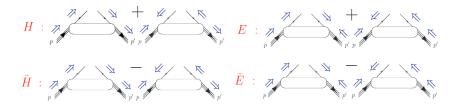
Proton structure and GPDs



Generalized Parton Distributions (GPDs): nucleon structure in terms of longitudinal momentum & transverse position.

 Measured in exclusive processes like Deeply Virtual Compton Scattering (DVCS).

Factorization: splitting into perturbative hard part + non-perturbative soft part (GPDs).

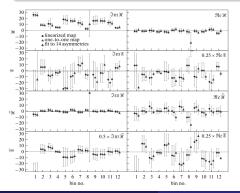

GPDs are accessible through **Compton Form Factors** (CFFs).

DVCS parameters

- E_k : beam energy.
- Q²: virtuality of the photon, Q² = -q² = -(k k')².
 x_B = Q²/(2p)q.
- t: 4-momentum transfer to the proton, $t = (p' p)^2$
- ϕ_h : angle between the leptonic and hadronic planes.

These parameters determine the kinematics of the scattered particles.

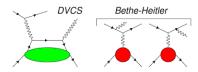
Connection of *E* to the total orbital angular momentum of the quarks through Ji's sum rule: $J^q = \frac{1}{2} \int dx \, x \left[H^q(x,\xi,t=0) + E^q(x,\xi,t=0) \right]$


E describes the process when the proton changes helicity.

Can we introduce a new observable to determine E to higher precision?

Measuring CFFs

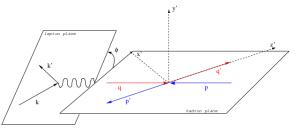
The common setup to measure CFFs

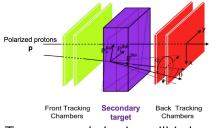

- *H*: unpolarized target
- $\tilde{\mathcal{H}}:$ longitudinally polarized target
- E: transversely polarized target challenge!
 - Gaseous transversely polarized target by <u>HERMES</u> (low luminosity).

- \mathcal{E} is much less constrained than $\mathcal{H}, \tilde{\mathcal{H}}.$
- *E* can also be measured through DVCS on a deuterium target, but theoretical complications.
- Can we extract more info on \mathcal{E} by measuring the **polarization** of the **recoil proton**?

Polarization

- Code by Pierre Guichon, using the exact mathematical expressions.
- The polarization $\vec{P} = (P_x, P_y, P_z)$ is computed for the DVCS+Bethe-Heitler process, including their interference.




Figure 1: Rotated CM frame (x'y'z')

- P_y (normal to the hadronic plane) is sensitive to CFF \mathcal{E} .
- Additionally, P_x is sensitive to $\tilde{\mathcal{H}}$.

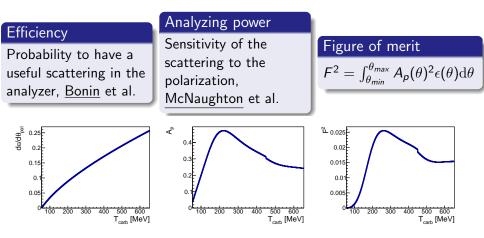
Olga Bessidskaia Bylund (CEA Saclay)

Recoil proton polarization in DVCS

Proton polarimeter

- Rescatter the proton with θ_{pol} , ϕ_{pol} inside a carbon analyzer.
- A set of trackers before and after the analyzer detect the incoming and outgoing protons.

Transverse polarization will induce a modulation:


$$N(\theta_{pol}, \phi_{pol}) = N_0 \frac{\mathrm{d}\epsilon}{\mathrm{d}\theta_{pol}} [1 + A_p(\theta_{pol})(P_y \cos \phi_{pol} - P_x \sin \phi_{pol})]$$

• Polarization \propto amplitude.

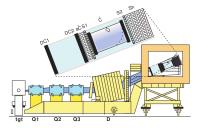
• At $\phi_h = 180^{\circ}$: $P_x \to -P_x$, $P_y \to P_y$ when beam helicity switches.

- Subtract over different beam helicity $\rightarrow P_{x}^{m}(\tilde{\mathcal{H}})$.
- Add all events $\rightarrow P_y$ (\mathcal{E}).
- Two experiments in one.

Polarimeter performance

The polarimeter performance depends on the proton momentum, scattering angle in the analyzer θ_{pol} and analyzer thickness (here 15 cm).

Challenges


- DVCS has a low cross section compared to (semi-)inclusive processes.
- We need to rescatter the recoil proton, expecting a polarimeter efficiency of order 0.1.
- To achieve high statistics we need a high luminosity.

Candidate facility: Hall C at Jefferson Lab, using a polarized electron beam and an unpolarized liquid hydrogen target.

Example settings

- Target length: 15 cm.
- Beam current: 10 μA during 3 weeks of data taking.

Electron and photon detection

Electron detection: HMS

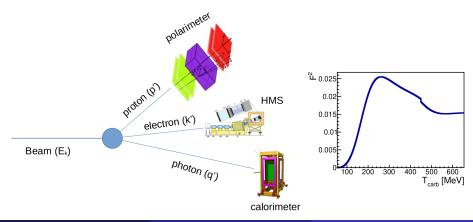
- Focusing spectrometer.
- Scattering angle acceptance: 10.5-80°.
- Angular acceptance: $\pm~1.8^\circ$ in-plane, $\pm 4.9^\circ$ out-of-plane.
- Momentum acceptance $\pm 10\%$.

Photon detection: NPS calorimeter

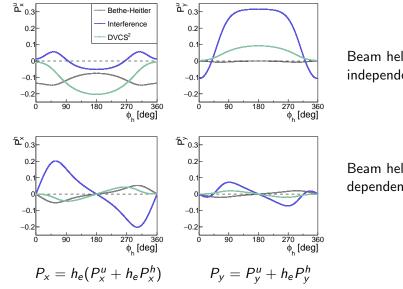
- Angular acceptance: $\pm 5.3^{\circ}$ horizontally, $\pm 6.7^{\circ}$ vertically.
- 30x36 PbWO₄ crystals. Position resolution: 2-3 mm.
- Sweeping magnet reduces low energy electron background.

10/32

Procedure

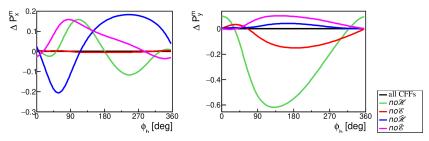

- Consider different DVCS configurations (5 parameters fully determine the particle kinematics).
- Evaluate the CFFs using GK model and compute the differential cross section and polarization.
- Construct a figure of merit \mathcal{F}' proportional to $\Delta P_y = P_y(\mathcal{E}) P_y(0)$: $\mathcal{F}' = F \cdot \sqrt{N_{protons}} \cdot \Delta P_y$.
- Take detector effects into account using Geant4 simulation.
- Require isolation of all particles from each other (10° in general, 10.5° electron-beam, 30° proton-electron).
- Imposing constraint $|t|/Q^2 \le 0.25$ for validity of leading twist.

Optimization result

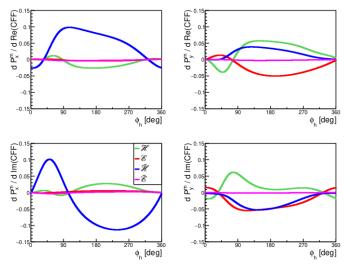

Maximizing \mathcal{F}' gives:

 $E_k = 10.6 \; {
m GeV}, \; Q^2 = 1.8 \; {
m GeV}^2, \; x_B = 0.17, \; t = -0.45 \; {
m GeV}^2, \; \phi_h = 180^\circ$

electron k'	$\theta_{k'}$	photon q'	$\theta_{q'}$	proton p'	E _{carb}	$\theta_{p'}$
4.96 GeV/ <i>c</i>	10.6°	5.40 GeV/ <i>c</i>	-15.1°	$0.71{ m GeV}/c$	$0.19{ m GeV}/c$	44°



Decomposition as a function of ϕ_h


Beam helicity independent (P_i^u)

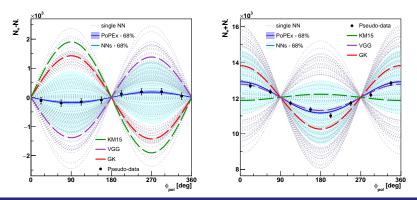
Beam helicity dependent (P_i^h)

- Looking at the difference in polarization ΔP_i between the GK model and GK model with one coefficient set to 0.
- Non-trivial ϕ_h dependence.
- The polarization appears sensitive to all CFFs.
- The difference depends on the values of the CFFs in the GK model.

dP/dCFF derivatives, ϕ_h

Derivatives w.r.t. $\Re(CFF)$, $\Im(CFF)$ removes the model dependence of the interference terms and reduces that of the (bilinear) DVCS² terms.

While the full expression is super lengthy, we have derived a local one, showing the kinematical coefficients.


At
$$E_k$$
=10.6 GeV, Q^2 =1.8 GeV², x_B =0.17, t =-0.45 GeV², ϕ_h =180°:

$$\mathcal{M}(x) = -20.42 + 19.06 \operatorname{Re}\tilde{\mathcal{H}} + 7.15 \operatorname{Re}\mathcal{H} - 1.04 \operatorname{Re}\mathcal{E} - 0.56 \operatorname{Re}\tilde{\mathcal{E}} -2.93 \left(\mathcal{H}\tilde{\mathcal{H}}^* + \mathcal{H}^*\tilde{\mathcal{H}}\right) + 0.16 \left(\mathcal{E}\tilde{\mathcal{H}}^* + \mathcal{E}^*\tilde{\mathcal{H}}\right) +0.04 \left(\mathcal{H}\tilde{\mathcal{E}}^* + \mathcal{H}^*\tilde{\mathcal{E}}\right) + 0.03 \left(\mathcal{E}\tilde{\mathcal{E}}^* + \mathcal{E}^*\tilde{\mathcal{E}}\right)$$
(1)

 $\mathcal{M}(y) = 15.50 \, \mathrm{Im}\mathcal{H} - 10.05 \, \mathrm{Im}\mathcal{E} + 3.44 \, \mathrm{Im}\tilde{\mathcal{H}} - 0.44 \, \mathrm{Im}\tilde{\mathcal{E}} + 1.51 \, \mathrm{Im}\left(\mathcal{E}\mathcal{H}^* - \mathcal{E}^*\mathcal{H}\right) + 0.14 \, \mathrm{Im}\left(\tilde{\mathcal{E}}\tilde{\mathcal{H}}^* - \tilde{\mathcal{E}}^*\tilde{\mathcal{H}}\right)$ (2)

 $P^i = \mathcal{M}(i)/\mathcal{M}(0).$

Fitting the polarization

Toy simulation of the polarimeter

- We assume a $\pm 20^{\circ} \times \pm 30^{\circ} (\theta_{p'} \times \phi_{p'})$ polarimeter and simulate.
- Extract P_x , P_y from the difference, sum over beam helicity.
- \bullet Statistical precision excludes \sim 90% of the NN replicas from the PARTONS team and discriminate betwen GPD models.

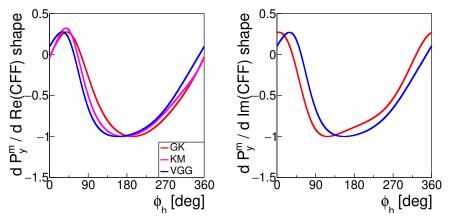
Olga Bessidskaia Bylund (CEA Saclay)

17 / 32

Optimizing wrt derivatives pre-simulation

Target	$ E_k $	Q^2	х _В	t	$dP_y/dCFF$	dxs [pb/]	F'
	10.6	1.9	0.19	-0.47	0.061	2.7	1.45
জ(E)	8.8	1.9	0.15	-0.47	0.045	5.5	1.53
(<i>E</i>)	10.6	2.2	0.17	-0.55	0.067	1.9	1.46
Ref (10.6	1.8	0.17	-0.45	0.050	3.8	1.33
$Ref\left(\Im ight)$	"	"	"	"	0.049	"	1.31

 $\mathsf{F}' = d\sigma \cdot (dP_y/dCFF)^2 \cdot \mathsf{FoM}_{pol} \cdot 100$


Target	E_k	Q^2	х _В	t	$dP_y/dCFF$	dxs [pb/]	F'
飛(E)	10.6	1.9	0.19	-0.47	0.061	2.7	1.45
জ(<i>E</i>)	8.8	1.9	0.15	-0.47	0.045	5.5	1.53
জ(E)	10.6	2.2	0.17	-0.55	0.067	1.9	1.46
Ref (ℜ)	10.6	1.8	0.17	-0.45	0.050	3.8	1.33
$Ref\left(\Im ight)$	"	"	"	"	0.049	"	1.31

$$\mathsf{F}' = d\sigma \cdot (d P_y/d CFF)^2 \cdot \, \mathsf{FoM}_{pol} \cdot 100$$

DVCS parameters	$p_e^\prime,~ heta_e^\prime$	$m{p}_{\gamma}^{\prime}$, $m{ heta}_{\gamma}^{\prime}$	p'_p, θ'_p
10.6,1.9,0.19,-0.47	5.27, 10.6	5.08, -16.6	'
8.8,1.9,0.15,-0.47		6.50, -10.8	
10.6,2.2,0.17,-0.55	3.70, 13.6	6.60, -12.6	0.797, 46
10.6,1.8,0.17,-0.45	4.96, 10.6	5.40, -15.1	0.712, 44

Note: The HMS has a higher acceptance at higher electron momentum.

Derivative for different input models

The value at 180° is near the highest absolute value of the derivatives for the VGG and KM models too.

Summary

- We have explored a new way of measuring \mathcal{E} by looking at the **polarization** of the **recoil proton** in DVCS.
- P_y is highly sensitive to \mathcal{E} and to different models.
- Very high statistics for 1 sr polarimeter, 3 weeks of data-taking, $10\mu A$.
- **Good discrimination** between the GK, VGG and KM15 models in the statistical analysis. Potential to exclude many NN replicas.
- A starting point for a proposal has been identified.
- Robustness checks:
 - The optimization result does not change by much when optimizing w.r.t. derivatives rather than $P_{\gamma} P_{\gamma}(E = 0)$ in GK.
 - For VGG and GK models, $\phi_h = 180^\circ$ is also a good choice.

Publication in PRD: PhysRevD.107.014020

- Consider the **background** and how to reduce it.
- Develop a polarimeter design and determine polarimeter dimensions.
 - The Super Big-bite Spectrometer will be moved to Hall C. Can the GEM detectors run without magnetic field at 44 degrees 1.5-2m away from the target?
 - Another possibility: scintillating fibers active polarimeter.

• Prepare a proposal for Hall C.

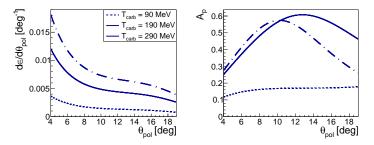
Backup

GPDs and proton structure

GPDs

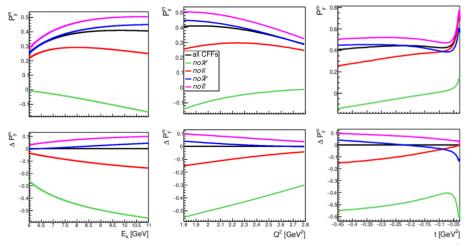
• GPDs and TMDs can both be obtained from Wigner distributions.

Olga Bessidskaia Bylund (CEA Saclay)

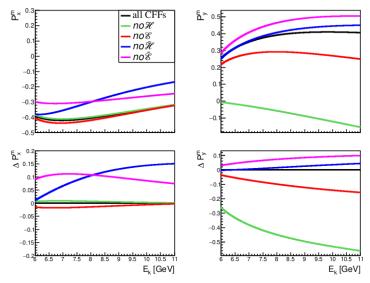

Recoil proton polarization in DVCS

2nd of February 2022 23 / 32

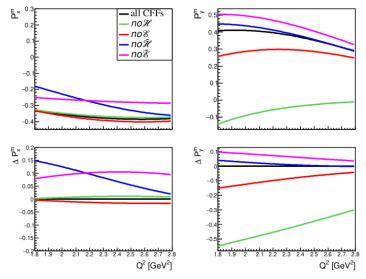
From helicity-dependent cross-section difference: $\left[\mathcal{C}_{n}^{I}\right]^{exp} \simeq \left[\mathcal{C}_{n}^{I}\right] = F_{1}\mathcal{H} + \xi(F_{1}+F_{2})\widetilde{\mathcal{H}} - \frac{t}{4M^{2}}F_{2}\mathcal{E}$


- Dominated by $\mathcal{H},\,\tilde{\mathcal{H}}$ for a proton.
- In neutron:
 - F₁ is small.
 - Cancellation between u, d polarized distibutions in $\tilde{\mathcal{H}}$.

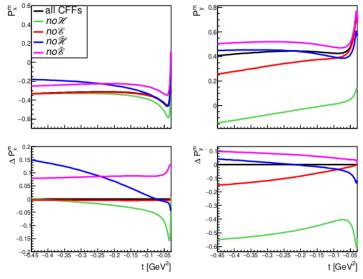
Polarimeter properties in our region of interest


- The efficiency increases with proton energy.
- The analyzing power peaks around a kinetic energy of \sim 200 MeV.

Variations around the proposed kinematics


The figure of merit favours high beam energy E_k , low photon virtuality Q^2 and high momentum transfer to the proton |t|. Imposing constraint $|t|/Q^2 \le 0.25$ for validity of leading twist.

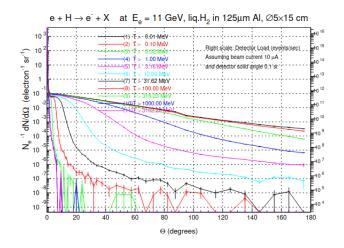
Variations: beam energy


A high beam energy is preferred.

Variations: Q^2

A low photon virtuality is favoured.

Variations: momentum transfer to the proton t



A high |t| is favoured, but we also impose $|t|/Q^2 \le 0.25$.

Model	H	E	$\mathcal{ ilde{H}}$	$ ilde{\mathcal{E}}$	P_x^m	P_{y}^{m}
GK	-1.1 +5.4i	-2.4 -0.4i	0.7 +1.8i	38 +19i	-0.33	0.41
VGG	-2.2 +4.8i	-1.0 +1.5i	0.5 +1.4i	51 +0i	0.32	0.17
KM15	-2.9 +3.2i	1.6 +0i	0.5 +1.5i	124 +0i	-0.44	-0.04
ANN	-1.6 ^{±2.6} +3.3 ^{±3.3} i	-4.1 ^{±9.2} +0 ^{±18} i	$0.6^{\pm 3.0} + 1.1^{\pm 2.5}$ i	$-25^{\pm 265}+4^{\pm 72}$	$0.04^{\pm 0.25}$	$0.20^{\pm 0.41}$

- Larger $|t| \rightarrow \text{larger } \Delta P_y$, smaller $d\sigma$.
- Larger $Q^2 \rightarrow \text{smaller } \Delta P_y$, smaller $\mathrm{d}\sigma$.
- Larger $x_B \rightarrow \text{smaller } d\sigma$.
- Large $|\mathsf{k}'|$ (small Q^2/x_B) \rightarrow larger acceptance.
- Small E_k or large Q^2 the angle between the electron and the proton decreases.

Accidental background

• The background of accidental electrons is largest at small angles from the beam.

Olga Bessidskaia Bylund (CEA Saclay)

Recoil proton polarization in DVCS

2nd of February 2022 32 / 32