Short Range Correlations (Hard Nuclear Processes)

Misak Sargsian Florida International University, Miami

HIPS2017, 6-7 Feb, 2017, CUA, Washington DC

I. Short Range Correlation Studies

- 1. Outstanding Problems in SRC studies
- 2. Choosing the probe reaction
- 3. Probing the deuteron at small distances
- 4. Probing multi-nucleon SRCs in medium to heavy nuclei

II. Hard Photodisintegration of few-body systems

- 1. Probing the mechanism of hard QCD hadronic interaction
- 2. Probing Non-nucleonic degrees of freedom/hidden color
- 3. Extracting J/Psi-N interaction near the threshold

1. Outstanding Problems in SRC studies

- Nuclear Forces at Short Distances: NN repulsive core
- Direct Observation of the dominance of high momentum protons in neutron rich heavy nuclei
- Direct Observation of 3N SRCs
- Non-Nucleonic Content of 2N SRCs

Nuclear Forces at Short Distances: NN repulsive core _

Jastrow 1951 assumed the existence of the hard core to explain the angular distribution of pp cross section at 340 MeV (r_0 =0.6fm)

100

200

Stability Theorem: Nuclei will Collapse without Repulsive interaction 1950s Weisskopf, Blatt

Modern NN Potentials

$$\begin{split} V^{2N} &= V_{EM}^{2N} + V_{\pi}^{2N} + V_{R}^{2N} \\ V_{R}^{2N} &= V^{c} + V^{l2}L^{2} + V^{t}S_{12} + V^{ls}L \cdot S + v^{ls2}(L \cdot S)^{2} \\ V^{i} &= V_{int,R} + V_{core} \end{split}$$

$$V_{core} = \left[1 + e^{\frac{r - r_0}{a}}\right]^{-1}$$
60's

Lattice Calculations

Contradicts Neutron Star Observations: will predict masses not more than 0.1 – 0.6 Solar mass

Probing the Deuteron at Short Distances

$$\Psi_d = \Psi_{pn} + \Psi_{\Delta\Delta} + \Psi_{NN^*} + \Psi_{hc} \cdots$$
$$\Psi_{hc} = \Psi_{N_c, N_c}$$

The NN core can be due to the orthogonality of $\langle \Psi_{N_c,N_c} \mid \Psi_{N,N}
angle = 0$

Probing Polarized Structure of the Deuteron at x > 1

- Tensor Polarized Deuteron = Compact Deuteron

- Direct Observation of the dominance of high momentum protons in neutron rich heavy nuclei for large $k > k_{Fermi}$ $n_A(k) \approx a_{NN}(A)n_{NN}(k)$ $p + A \rightarrow p + p + n + X$ $P_{pn/px} = 0.92^{+0.08}_{-0.18}$ $p_{pn} \le \frac{1}{2}(1 - P_{pn/pX}) = 0.04^{+0.09}_{-0.04}$ Theoretical analysis of BNL Data E. Piasetzky, MS, L. Frankfurt, M. Strikman, J. Watson PRL, 2006 $e + A \rightarrow e' + p + (p/n) + X$ $P_{pp/pn} = 0.056 \pm 0.018$ Direct Measurement at JLab R.Subdei, et al Science, 2008

Factor of 20

Expected 4 (Wigner counting)

Theoretical Interpretation $\Phi^{(1)}(k_1, \cdots, k_c, \cdots, -k_c, \cdots, k_A) \approx \frac{U_{NN}(k_c)}{k_c^2} F_A(k_1, \cdots' \cdots', \cdots, k_A)$ $n_A(k) \approx a_{NN}(A) n_{NN}(k)$

Explanation lies in the dominance of the <u>tensor</u> part in the NN interaction

Explanation lies in the dominance of the <u>tensor</u> part in the NN interaction

 Dominance of pn short range correlations as compared to pp and nn SRCS

 Dominance of NN Tensor as compared to the NN Central Forces at <= 1fm 2006-2008s

- Two New Properties of High Momentum Component

- Energetic Protons in Neutron Rich Nuclei

at
$$p > k_F$$

$$\left[n^A(p) \sim a_{NN}(A) \cdot n_{NN}(p)
ight]$$
 (1

- Dominance of pn Correlations (neglecting pp and nn SRCs) $n_{NN}(p) \approx n_{pn}(p) \approx n_{(d)}(p)$ (2)

$$n^A(p) \sim a_{pn}(A) \cdot n_d(p)$$

 $a_2(A) \equiv a_{NN}(A) \approx a_{pn}(A)$

- Define momentum distribution of proton & neutron $n^{A}(p) = \frac{Z}{A}n_{p}^{A}(p) + \frac{A-Z}{A}n_{n}^{A}(p) \qquad (3)$ $\int n_{p/n}^{A}(p)d^{3}p = 1$
- Define

$$I_p = \frac{Z}{A} \int_{k_F}^{600} n_p^A(p) d^3 p \qquad \qquad I_n = \frac{A - Z}{A} \int_{k_F}^{600} n_n^A(p) d^3 p$$

- and observe that in the limit of no pp and nn SRCs $I_p = I_n$
- Neglecting CM motion of SRCs

 $\frac{Z}{A}n_p^A(p) \approx \frac{A-Z}{A}n_n^A(p)$

First Property: Approximate Scaling Relation

-if contributions by pp and nn SRCs are neglected and the pn SRC is assumed at rest

MS,arXiv:1210.3280 Phys. Rev. C 2014

- for $\sim k_F - 600 \text{ MeV/c}$ region:

$$x_p \cdot n_p^A(p) \approx x_n \cdot n_n^A(p)$$

where
$$x_p = \frac{Z}{A}$$
 and $x_n = \frac{A-Z}{A}$.

Realistic 3He Wave Function: Faddeev Equation

MS, PRC 2014

Be9 Variational Monte Carlo Calculation:

Robert Wiringa 2013 http://www.phy.anl.gov/theory/research/momenta/

Second Property: MS,arXiv:1210.3280 Phys. Rev. C 2014 Using Definition: $n^{A}(p) = \frac{Z}{A}n_{p}^{A}(p) + \frac{A-Z}{A}n_{n}^{A}(p)$ $n^A(p) \sim a_{NN}(A) \cdot n_{NN}(p)$ **Approximations:** $n_{NN}(p) \approx n_{pn}(p) \approx n_{(d)}(p)$ And: $I_p = I_n$ $I_p + I_n = 2I_N = a_{pn}(A) \int n_d(p) d^3p$ One Obtains: $x_p \cdot n_p^A(p) \approx x_n \cdot n_n^A(p) \approx \frac{1}{2} a_{NN}(A, y) n_d(p)$ where $y = |1 - 2x_p| = |x_n - x_p|$ - $a_{NN}(A,0)$ corresponds to the probability of pn SRC in symmetric nuclei - $a_{NN}(A, 1) = 0$ according to our approximation of neglecting pp/nn SRCs

Second Property: Fractional Dependence of High Momentum Component

 $a_{NN}(A, y) \approx a_{NN}(A, 0) \cdot f(y)$ with f(0) = 1 and f(1) = 0

$$f(|x_p - x_n|) = 1 - \sum_{j=1}^n b_i |x_p - x_x|^i$$
 with $\sum_{j=1}^n b_i = 0$

In the limit $\sum_{i=1}^{n} b_i |x_p - x_x|^i \ll 1$ Momentum distributions of p & n are inverse proportional to their fractions

$$\left(n_{p/n}^{A}(p) \approx \frac{1}{2x_{p/n}} a_2(A, y) \cdot n_d(p)\right)$$

 $x_{p/n} = \frac{Z/N}{\Lambda}$

Observations: High Momentum Fractions

MS,arXiv:1210.3280 Phys. Rev. C 2014

 $P_{p/n}(A,y) = rac{1}{2x_{p/n}} a_2(A,y) \int\limits_{k_F}^{\infty} n_d(p) d^3p$

Α	Pp(%)	Pn(%)
12	20	20
27	23	22
56	27	23
197	31	20

Requires dominance of pn SRCs in heavy neutron reach nuclei O. Hen, M.S. L. Weinstein, et.al. Science, 2014

Is the total kinetic energy inversion possible?

Checking for He3

Energetic Neutron

$$E_{kin}^{p} = 14 \text{ MeV} (p = 157 \text{ MeV/c})$$

 $E_{kin}^n = 19 \text{ MeV} (p = 182 \text{ MeV/c})$

Energetic Neutron (Neff & Horiuchi) $E_{kin}^p = 13.97 \text{ MeV}$ $E_{kin}^n = 18.74 \text{ MeV}$

VMC Estimates: Robert Wiringa

MS,arXiv:1210.3280 Phys. Rev. C 2014

Table	1:	Kinetic	energies	(in)	MeV) of	proton	and	neutron
-------	----	---------	----------	------	-----	------	--------	-----	---------

A	У	E^p_{kin}	E^n_{kin}	$\overline{E^p_{kin} - E^n_{kin}}$
$^{8}\mathrm{He}$	0.50	30.13	18.60	11.53
$^{6}\mathrm{He}$	0.33	27.66	19.06	8.60
$^{9}\mathrm{Li}$	0.33	31.39	24.91	6.48
$^{3}\mathrm{He}$	0.33	14.71	19.35	-4.64
$^{3}\mathrm{H}$	0.33	19.61	14.96	4.65
$^{8}\mathrm{Li}$	0.25	28.95	23.98	4.97
$^{10}\mathrm{Be}$	0.2	30.20	25.95	4.25
$^{7}\mathrm{Li}$	0.14	26.88	24.54	2.34
$^{9}\mathrm{Be}$	0.11	29.82	27.09	2.73
$^{11}\mathrm{B}$	0.09	33.40	31.75	1.65

Heavy Nuclei?

Egiyan, et al PRC 2004

Tang et al PRL 2002

Subedi et al Science 2006

Factorization of 3N SRC distribution in nuclei?

 $R = \frac{A_2 \sigma[A_1(e,e')X]}{A_1 \sigma[A_2(e,e')X]}$ For $2 < x < 3 \ R \approx \frac{a_3(A_1)}{a_3(A_2)}$

Egiyan, et al PRL 2006

Fomin et al PRL 2011

- Three Nucleon Short Range Correlations: New Signatures of 3N SRCs

- Non-Nucleonic Content of 2N SRCs
- No non-nuclonic component is observed for pn system up to 650 MeV/c

- The relative momenta in the NN system which will be sensitive to the core dynamics can be estimated based on the threshold of inelastic N-Delta transition

$$\sqrt{M_N^2 + p^2} - M_N > M_\Delta - M_N$$

 $p \ge 800 \text{ MeV/c}$

- Outstanding Problems in SRC studies

- 1. Deuteron 500 800 MeV/c
- 2. Protons in neutron rich nuclei
- 3. Deuteron > 800 MeV/c (core physics)
- 4.Observation and systematic studies of 3N SRCs

2. Choosing the probe $\gamma + A \rightarrow N_f + \pi + N_r + X$ $\gamma + N_i \rightarrow N_f + \pi$ at fixed and large $\theta_{cm} \sim 90^0$ $\frac{d\sigma}{dt} \sim \frac{f(\theta_{cm})}{s^7}$ for $E_{\gamma} > 1$ GeV $S_i = S_0 \cdot \alpha_i$ Reaction chooses $\alpha_i < 1!$ Frankfurt, Liu, Strikman, Farrar PRL 1989

$$\alpha_i = \frac{E_i - p_i^z}{M_N}$$

 External probe selects a bound nucleon moving in the probes direction

Maria Patsyuk's talk

3. Probing multi-nucleon SRCs in medium to heavy nuclei

Maria Patsyuk's talk

II. Hard Photodisintegration of few-body systems

1. Probing the mechanism of hard QCD hadronic interaction

-Can be Studied in Hard Exclusive NN Scattering Reactions -Last Experiments were done at early 90's at AGS, BNL

$$s = (k_{\gamma} + p_d)^2 = 2M_d E_{\gamma} + M_d^2$$
$$= (k_{\gamma} - p_N)^2 = [\cos\theta_{cm} - 1] \frac{s - M_d^2}{2}$$

Brodsky, Chertock, 1976 Holt, 1990 Gilman, Gross, 2002

t

$$E_{\gamma} = 2 \text{ GeV}, \ s = 12 \text{ GeV}^2, \ t \mid_{90^0} \approx -4 \text{ GeV}^2, \ M_x = 2 \text{ GeV}$$

 $E_{\gamma} = 12 \text{ GeV}, \ s = 41 \text{ GeV}^2, \ t \mid_{90^0} \approx -18.7 \text{ GeV}^2, \ M_x = 4.4 \text{ GeV}$

Gilman & Gross 2002

$$\langle p_{\lambda_A}, n_{\lambda_B} \mid A \mid \lambda_{\gamma}, \lambda_D \rangle = \sum_{\lambda_2} \frac{f(\theta_{cm})}{3\sqrt{2s'}} \times \\ \left(\langle p_{\lambda_A}, n_{\lambda_B} \mid A_{pn}(s, t_n) \mid p_{\lambda_{\gamma}}, n_{\lambda_2} \rangle - \langle p_{\lambda_A}, n_{\lambda_B} \mid A_{pn}(s, u_n) \mid n_{\lambda_{\gamma}} p_{\lambda_2} \rangle \right) \\ \int \Psi^{\lambda_D, \lambda_{\gamma}, \lambda_2}(\alpha_c, p_{\perp}) \frac{d^2 p_{\perp}}{(2\pi)^2}$$
(1)

$$\Psi^{\lambda_D,\lambda_1\lambda_2} = (2\pi)^{\frac{3}{2}} \Psi_{NR}^{J_D,\lambda_1,\lambda_2} \sqrt{m} = [u(k) + w(k)\sqrt{\frac{1}{8}}S_{12}]\xi_1^{\lambda_D,\lambda_1,\lambda_2}$$

$$\frac{d\sigma^{\gamma d \to pn}}{dt} = \frac{8\alpha}{9}\pi^4 \cdot \frac{1}{s'}C(\frac{\tilde{t}}{s})\frac{d\sigma^{pn \to pn}(s,\tilde{t})}{dt} \left| \int \Psi_d^{NR}(p_z=0,p_\perp)\sqrt{m_N}\frac{d^2p_\perp}{(2\pi)^2} \right|^2,$$

 $C(\frac{\tilde{t}}{s})\mid_{\theta_{cm}=90}=1$

Break up of pn from the deuteron

Break up of pp from Helium 3

Frankfurt, Miller, M.S. Strikman Phys. Lett. Let. 2000

Brodsky, Frankfurt, Gilman, Hiller, Miller Piasetzky, M.S., Strikman Phys. Lett. B 2004

Photodisintegration of ³He: $\gamma + {}^3He
ightarrow p + d$

$$\frac{d\sigma}{dt}(s,t) = \frac{2\pi^4 \alpha}{3s'_{3He}} \left(\frac{s'_N}{s'_{3He}}\right) \frac{d\sigma_{pd}}{dt}(s,t_{pd}) \cdot m_N S^{NR}_{3He/d}(p_{1z}=0)$$

D. Maheswari, MS, 2017 Phys. Rev. C in press

56

What's Next:

1. Studying Hard Hadronic Processes

Break – up reactions to the deuteron break–up of other 2Baryons

$$\gamma + d \to \Delta + \Delta$$

M. S., and C.Granados Phys. Rev. C 2011

$$N, \Delta, \dots R$$

 $\gamma(*)$ $D, {}^{3}He(pp, n)$
 $N, \Delta, \dots R$

Extraction of hard Baryonic Helicity Amplitudes from Polarized measurement

2. Probing $(s\bar{s})$ or $(c\bar{c})$ component of the nucleon

Studying cc component in the deuteron

$$\gamma + d \to p + \Sigma_c^+ + D_c^-$$

Outlook

- (JLAB 4-6 GeV) : Experimentally established adequacy of QCD degrees of freedom in hard break-up of light nuclei
- (JLAB 4-6 GeV) : Hard Rescattering Mechanism consistent with major observations of the break-up reaction
- (JLAB 12 GeV): Studying Hard Rescattering Mechanism of break up of light nuclei into baryonic resonances (including strangeness production)

III. Extracting J/Psi-N interaction near the threshold

-Vector meson photoproduction can be used to extract VN scattering cross section

– Experience from coherent vector meson photoproduction $\,\gamma + d
ightarrow V + d'$

III. Extracting J/Psi-N interaction near the threshold

 $\gamma + d \rightarrow J/\Psi + p + n$

Adam Freese, MS, PRC 2013

Outlook

- Vector Meson Production with deuteron break-up is an effective tools for extracting VN scattering cross section