Light meson form factors in light-front dynamics with color singlet Nambu-Jona-Lasinio interactions

Shaoyang Jia

Department of Physics and Astronomy, Iowa State University

BLFQ-NJL in collaboration with Wenyang Qian and J. Vary

also presenting BLFQ results from Lekha Adhikari, Guangyao Chen, Meijian Li, Pieter Maris, Shuo Tang, Anji Yu, Chandan Mondal, and Xingbo Zhao

Workshop on Pion and Kaon Structure at an Electron-Ion Collider May 28, 2018 Catholic University of America

Recent progress on the basis light-front quantization approach to hadron physics

The basis light-front quantization - Nambu-Jona-Lasinio model for the light mesons

Dirac's forms of relativistic dynamics [Dirac, Rev. Mod. Phys. **21**, 392–1949] Instant form is the well-known form of dynamics starting with $x^0 = t = 0$ $K^i = M^{0i}$, $J^i = \frac{1}{2} \varepsilon^{ijk} M^{jk}$, $\varepsilon^{ijk} = (+1, -1, 0)$ for (cyclic, anti-cyclic, repeated) indeces Front form defines relativistic dynamics on the light front (LF): $x^+ = x^0 + x^3 = t + z = 0$

 $P^{\pm} \triangleq P^{0} \pm P^{3}, \ \vec{P}^{\perp} \triangleq (P^{1}, P^{2}), \ x^{\pm} \triangleq x^{0} \pm x^{3}, \ \vec{x}^{\perp} \triangleq (x^{1}, x^{2}), \ E^{i} = M^{+i}, \ E^{+} = M^{+-}, \ F^{i} = M^{-i}$

Adapted from talk by Yang Li

Light Front (LF) Hamiltonian Defined by its Elementary Vertices in LF Gauge

Light-Front Wavefunctions (LFWFs) $|\psi_h(P, j, \lambda)\rangle = \sum_n \int [d\mu_n] \psi_{n/h}(\{\vec{k}_{i\perp}, x_i, \lambda_i\}_n) |\{\vec{p}_{i\perp}, p_i^+, \lambda_i\}_n\rangle$

LFWFs are *frame-independent* (boost invariant) and depend only on the relative variables: $x_i \equiv p_i^+/P^+$, $\vec{k}_{i\perp} \equiv \vec{p}_{i\perp} - x_i \vec{P}_{\perp}$

LFWFs provide intrinsic information of the structure of hadrons, and are indispensable for exclusive processes in DIS [Lepage '80]

- Overlap of LFWFs: structure functions (e.g. PDFs), form factors, …
- Integrating out LFWFs: light-cone distributions (e.g. DAs)

For mesons we adopt (later extended to baryons): [Y. Li, et al., PLB758 (2016)]

$$f_{\alpha=\{nml\}}\left(\vec{k}_{\perp},x\right) = \phi_{nm}\left(\vec{k}_{\perp}/\sqrt{x(1-x)}\right)\chi_{l}\left(x\right)$$

 ϕ_{nm} 2D-HO functions

 χ_l Jacobi polynomials times $x^a(1-x)^b$

Set of Transverse 2D HO Modes for n=4

J.P. Vary, H. Honkanen, J. Li, P. Maris, S.J. Brodsky, A. Harindranath, G.F. de Teramond, P. Sternberg, E.G. Ng and C. Yang, PRC 81, 035205 (2010)

Normalized longitudinal basis functions

BLFQ Symmetries & Constraints

Baryon number

Charge

Angular momentum projection (M-scheme)

Longitudinal momentum (Bjorken sum rule)

Transverse mode regulator (2D HO)

Longitudinal mode regulator (Jacobi)

Global Color Singlets (QCD)

Light Front Gauge

Optional Fock-Space Truncation

 $H \rightarrow H + \lambda H_{CM}$

Light-Front Regularization and Renormalization Schemes

- 1. Regulators in BLFQ (N_{max} , L)
- 2. Additional Fock space truncations (if any)
- 3. Counterterms identified/tested*
- 4. Sector-dependent renormalization**
- 5. RGPEP (Glazek, Gomez-Rocha, and others, e.g. arXiv:1805.03436)
- 6. SRG & OLS in NCSM*** adapted to BLFQ (future)

*D. Chakrabarti, A. Harindranath and J.P. Vary, Phys. Rev. D 69, 034502 (2004)
*P. Wiecki, Y. Li, X. Zhao, P. Maris and J.P. Vary, Phys. Rev. D 91, 105009 (2015)

**V. A. Karmanov, J.-F. Mathiot, and A. V. Smirnov,
Phys. Rev. D 77, 085028 (2008); Phys. Rev. D 86, 085006 (2012)
**Y. Li, V.A. Karmanov, P. Maris and J.P. Vary,
Phys. Letts. B. 748, 278 (2015); arXiv: 1504.05233

***B.R. Barrett, P. Navratil and J.P. Vary, Prog. Part. Nucl. Phys. **69**, 131 (2013)

Heavy Quarkonia [Y.Li,PLB758,2016; PRD96,2017]

• Effective Hamiltonian in the $q\overline{q}$ sector

$$H_{\text{eff}} = \underbrace{\frac{\vec{k}_{\perp}^2 + m_q^2}{x} + \frac{\vec{k}_{\perp}^2 + m_{\bar{q}}^2}{1 - x}}_{\text{LF kinetic energy}} + \underbrace{\kappa^4 x (1 - x) \vec{r}_{\perp}^2 - \frac{\kappa^4}{(m_q + m_{\bar{q}})^2} \frac{\partial}{\partial x} \left(x(1 - x) \frac{\partial}{\partial x}\right)}_{\text{confinement}} + \underbrace{\frac{V_g}{(m_q + m_{\bar{q}})^2} \frac{\partial}{\partial x} \left(x(1 - x) \frac{\partial}{\partial x}\right)}_{\text{exchange}} + \underbrace{\frac{V_g}{(m_q + m_{\bar{q}})^2} \frac{\partial}{\partial x} \left(x(1 - x) \frac{\partial}{\partial x}\right)}_{\text{exchange}} + \underbrace{\frac{V_g}{(m_q + m_{\bar{q}})^2} \frac{\partial}{\partial x} \left(x(1 - x) \frac{\partial}{\partial x}\right)}_{\text{exchange}} + \underbrace{\frac{V_g}{(m_q + m_{\bar{q}})^2} \frac{\partial}{\partial x} \left(x(1 - x) \frac{\partial}{\partial x}\right)}_{\text{exchange}} + \underbrace{\frac{V_g}{(m_q + m_{\bar{q}})^2} \frac{\partial}{\partial x} \left(x(1 - x) \frac{\partial}{\partial x}\right)}_{\text{exchange}} + \underbrace{\frac{V_g}{(m_q + m_{\bar{q}})^2} \frac{\partial}{\partial x} \left(x(1 - x) \frac{\partial}{\partial x}\right)}_{\text{exchange}} + \underbrace{\frac{V_g}{(m_q + m_{\bar{q}})^2} \frac{\partial}{\partial x} \left(x(1 - x) \frac{\partial}{\partial x}\right)}_{\text{exchange}} + \underbrace{\frac{V_g}{(m_q + m_{\bar{q}})^2} \frac{\partial}{\partial x} \left(x(1 - x) \frac{\partial}{\partial x}\right)}_{\text{exchange}} + \underbrace{\frac{V_g}{(m_q + m_{\bar{q}})^2} \frac{\partial}{\partial x} \left(x(1 - x) \frac{\partial}{\partial x}\right)}_{\text{exchange}} + \underbrace{\frac{V_g}{(m_q + m_{\bar{q}})^2} \frac{\partial}{\partial x} \left(x(1 - x) \frac{\partial}{\partial x}\right)}_{\text{exchange}} + \underbrace{\frac{V_g}{(m_q + m_{\bar{q}})^2} \frac{\partial}{\partial x} \left(x(1 - x) \frac{\partial}{\partial x}\right)}_{\text{exchange}} + \underbrace{\frac{V_g}{(m_q + m_{\bar{q}})^2} \frac{\partial}{\partial x} \left(x(1 - x) \frac{\partial}{\partial x}\right)}_{\text{exchange}} + \underbrace{\frac{V_g}{(m_q + m_{\bar{q}})^2} \frac{\partial}{\partial x} \left(x(1 - x) \frac{\partial}{\partial x}\right)}_{\text{exchange}} + \underbrace{\frac{V_g}{(m_q + m_{\bar{q}})^2} \frac{\partial}{\partial x} \left(x(1 - x) \frac{\partial}{\partial x}\right)}_{\text{exchange}} + \underbrace{\frac{V_g}{(m_q + m_{\bar{q}})^2} \frac{\partial}{\partial x} \left(x(1 - x) \frac{\partial}{\partial x}\right)}_{\text{exchange}} + \underbrace{\frac{V_g}{(m_q + m_{\bar{q}})^2} \frac{\partial}{\partial x} \left(x(1 - x) \frac{\partial}{\partial x}\right)}_{\text{exchange}} + \underbrace{\frac{V_g}{(m_q + m_{\bar{q}})^2} \frac{\partial}{\partial x} \left(x(1 - x) \frac{\partial}{\partial x}\right)}_{\text{exchange}} + \underbrace{\frac{V_g}{(m_q + m_{\bar{q}})^2} \frac{\partial}{\partial x} \left(x(1 - x) \frac{\partial}{\partial x}\right)}_{\text{exchange}} + \underbrace{\frac{V_g}{(m_q + m_{\bar{q}})^2} \frac{\partial}{\partial x} \left(x(1 - x) \frac{\partial}{\partial x}\right)}_{\text{exchange}} + \underbrace{\frac{V_g}{(m_q + m_{\bar{q})^2}} \frac{\partial}{\partial x} \left(x(1 - x) \frac{\partial}{\partial x}\right)}_{\text{exchange}} + \underbrace{\frac{V_g}{(m_q + m_{\bar{q}})^2} \frac{\partial}{\partial x} \left(x(1 - x) \frac{\partial}{\partial x}\right)}_{\text{exchange}} + \underbrace{\frac{V_g}{(m_q + m_{\bar{q})^2}} \frac{\partial}{\partial x} \left(x(1 - x) \frac{\partial}{\partial x}\right)}_{\text{exchange}} + \underbrace{\frac{V_g}{(m_q + m_{\bar{q})^2}} \frac{\partial}{\partial x} \left(x(1 - x) \frac{\partial}{\partial x}\right)}_{\text{exchange}} + \underbrace{\frac{V_g}{(m_q +$$

where
$$x = p_q^+/P^+$$
, $\vec{k}_\perp = \vec{p}_{q\perp} - x\vec{P}_\perp$, $\vec{r}_\perp = \vec{r}_{q\perp} - \vec{r}_{\bar{q}\perp}$.

Confinement

transverse holographic confinement [S.J.Brodsky,PR584,2015] longitudinal confinement [Y.Li,PLB758,2016]

- One-gluon exchange with running coupling $V_g = -\frac{4}{3} \frac{4\pi \alpha_s(Q^2)}{Q^2} \bar{u}_{\sigma'} \gamma^{\mu} u_{\sigma} \bar{v}_s \gamma_{\mu} v_{s'}$
- Basis representation
 - valence Fock sector: $|qar{q}
 angle$
 - basis functions: eigenfunctions of H₀ (LF kinetic energy+ confinement)

Adopt a running coupling with regulated IR behavior: improves UV properties of BLFQ applications

Y. Li, P. Maris and J.P. Vary, PRD96, 016022 (2017)

Spectroscopy

[Li, Maris & Vary, PRD '17; Tang, Li, Maris & Vary, in preparation]

Radiative transitions between 0⁻⁺ and 1⁻⁻ heavy quarkonia

Meijian Li, et al.; arXiv: 1803.11519

Light-front wavefunctions: Yang Li, Pieter Maris, James P. Vary. Phys. Rev. D 96, 016022 (2017)

Radiative transitions between 0⁻⁺ and 1⁻⁻ heavy quarkonia

Meijian Li, et al.; arXiv: 1803.11519

 [PDG] C.Patrignani, et al., CPC40,2016.
 [Lattice] J. J. Dudek, et al., PRD73,2006; PRD79, 2009. D. Bečirević, et al., JHEP01,2013; JHEP05,2015. C. Hughes, et al., PRD92,2015. R.Lewis, et al., PRD86,2012.
 [relativistic Quark Model (rQM)] D.Ebert, et al., PRD67, 2013.
 [Godfrey-Isqur Model (GI Model)] T.Barnes, et al., PRD72,2005; S.Godfrey, et al., PRD92, 2015.

B_c Meson System in BLFQ

BLFQ: S. Tang, et al., in preparation LFQM: H.-M. Cho and C.R. Ji, (2009) Lattice: B. Colquhoun, et al., (2015)

Heavy-Light systems (preliminary)

S. Tang, et al., in preparation

	N_{f}	$\kappa \; (\text{GeV})$	$m_c \; (\text{GeV})$	$m_b~({ m GeV})$	$m_s~({ m GeV})$	$\rm rms~(MeV)$	$N_{\rm max} = L_{\rm max}$
$D_s(c\bar{s})$	4	0.783	1.603	—	0.597	38	32
$B_s(bar{s})$	4	1.054	_	4.902	0.597	39	32

 $\kappa = \sqrt{(\kappa_{b\bar{b}/c\bar{c}}^2 + \kappa_{s\bar{s}}^2)/2}$, with $\kappa_{s\bar{s}} = 0.54 \text{ GeV}$

Mass spectrum of heavy-light systems. States under open flavor threshold confirmed by experiments. Decay constants calculated with $N_{\text{max}} = 8$ for D_s , $N_{\text{max}} = 32$ for B_s , corresponding to UV cutoffs:

$$\Lambda_{\rm UV} \triangleq \kappa \sqrt{N_{\rm max}} \approx m_q + m_a$$

Hadron Tomography

- ► Generalized parton distributions (GPDs) [Ji '97 & '98] $H(x, \zeta, t) = \frac{1}{2} \int \frac{\mathrm{d}z^{-}}{2\pi} e^{ixP^{+}z^{-}} \langle P' | \overline{\psi}(-\frac{1}{2}z) \gamma^{+} \psi(+\frac{1}{2}z) | P \rangle \Big|_{z^{+}=z^{\perp}=0}$ $q = P' - P, \ \zeta = q^{+}/P^{+}, \ t = q^{2}.$
 - DVCS, SIDIS, ..., spin physics
- Impact parameter dependent GPDs:

[Burkardt '01]

$$q(x, \vec{b}_{\perp}) = \int \frac{\mathrm{d}^2 \Delta_{\perp}}{(2\pi)^2} e^{i \vec{\Delta}_{\perp} \cdot \vec{b}_{\perp}} H(x, \zeta = 0, t = -\Delta_{\perp}^2).$$
partonic interpretation:
$$\int d^2 b_{\perp} \int_{0}^{1} dx \ q(x, \vec{b}_{\perp}) = 1.$$

Spin non-flip GPDs H(x,0,t) $H(x,\xi=0,t=-\vec{\Delta}_{\perp}^2) = \sum_{\lambda_q,\lambda_{\bar{q}}} \int d^2 \vec{k}_{\perp} \psi^*(\vec{k}'_{\perp},x,\lambda_q,\lambda_{\bar{q}}) \psi(\vec{k}_{\perp},x,\lambda_q,\lambda_{\bar{q}}).$

Charmonium Tomography Spin non-flip GPDs 13 13 H(x,0,t)H(x,0,t) 2 1 0 0 5 $10 (GeV^2)$ 15 15 0 5 $10^{-10} (G_{eV^2})$ х х 0.4 0.2 0.4 0.2 0.6 0.8 0.6 20 0.8 .0 20 1.0 (a) $\chi_{c0}: 1^3 P_0(0^{++})$ (c) $\eta'_{\rm c}: 2^1 S_0(0^{-+})$ $q(x,b_{\perp})$ (GeV²) $\begin{array}{c} q(x,b_{\perp}) \\ q(x,b_{\perp}) \\ q(x,b_{\perp}) \\ q(x,b_{\perp}) \end{array}$ Impact parameterdependent GPDs 0.8 0.4 0.8 $b_{\perp}(\text{GeV}^{-1}$ $b_{\perp}(\text{GeV}^{-1}$ 26 0. 0.2 0.4 0. \overline{x} x (d) $\eta'_{\rm c}: 2^1 S_0(0^{-+})$ (b) $\chi_{c0}: 1^3 P_0(0^{++})$

L. Adhikari, et al., in preparation

Moving to light mesons – role of chiral symmetry

Spectroscopy: BLFQ with one-gluon dynamics

Wenyang Qian, et al., In preparation

Parton distribution amplitudes for the pion

DSE: Lei Chang et al, PRL110, 132001(2013) Cloët(2013): Cloët et al, PRL111, 092001(2013) AdS/QCD + IMA: Brodsky et al, PhysRep548, 1(2015)

Exclusive processes at large momentum transfer $\phi_{\mathcal{P},\mathcal{V}}(x,\mu) \sim \frac{1}{f_{\mathcal{P},\mathcal{V}}\sqrt{x(1-x)}}$ $\times \int \frac{d^2 \mathbf{k}_{\perp}}{(2\pi)^3} \psi^{(m_j=0)}_{\uparrow\downarrow\pm\downarrow\uparrow}(x, \mathbf{k}_{\perp})$ 1.0 $(\mathbf{x})_{\mathbf{x}}^{\mathbf{x}} 0.5$ $0.01 \\ 0.90$ 0.93 0.95 0.98 1.00 Х

Baryons

Anji Yu, et al., in preparation

Flavor form factor & GPD in BLFQ Chandan Mondal

 \Box Dirac form factor (F_1) in light-front [with $q^+ = 0$] for the proton

$$F_1(-q^2) = \langle P+q; \Lambda | \frac{J^+(0)}{2P^+} | P; \Lambda \rangle; \qquad F_1^q(-q^2) = \int dx \ H^q(x, -q^2).$$

✓ In terms of overlap of light-front WFs:, $H^q(x, -q^2)$:

 $\sum_{\lambda_i} \int \prod_{i=1}^3 dx_i \, d^2 \mathbf{k}_{\perp i} \delta(1 - \sum x_j) \delta(x - x_1) \delta^2(\sum \mathbf{k}_{\perp j}) \Psi_{\lambda_i}^{\Lambda *}(x_i, \mathbf{k}'_{\perp i}) \Psi_{\lambda_i}^{\Lambda}(x_i, \mathbf{k}_{\perp i})$

Probing small-x gluons in high-energy nuclear collisions through vector-meson production

Electron Ion Collider--high luminosity, wide kinematic range.

Enable precision measurement of VM LFWF, especially the higher excited states. $_{\gamma \rightarrow \Psi(2s)p}$

Chen, Li, Maris, Tuchin and Vary, PLB 769, 477, 2017

Full Basis Light-Front Quantization (FBLFQ)

Pure glue sector QCD – Glueballs?

Color basis space dimensions of each multi-gluon space-spin configuration

Figure extended from Vary, et al., 2010

Distribution functions for 4 lowest mass eigenstates

 $N_{max} = K = 6$ b=0.5 GeV $g_{s}=0.5$ $m_{g} = 0.25$ GeV

Hamiltonian matrix dimension ~ 2000; Calculation runs in 3 mins on laptop.

Next step: add 2 other vertices

The Lagrangian of QCD before gauge fixing:

$$\mathcal{L}_{\rm QCD} = \overline{\psi} (i \not D - m) \psi - \frac{1}{4} G^a_{\mu\nu} G^{\mu\nu}_a, \qquad (1)$$

is a result of a local $SU(3)_c$ gauge symmetry:

$$\psi(x) \to \exp\left(-i\sum_{a=1}^{8}T_a\Theta_a(x)\right)\psi(x).$$

Consider quark field with three flavors:

$$\psi = (\mathbf{u}, \mathbf{d}, \mathbf{s})^{\mathrm{T}}, \quad \boldsymbol{m} = \mathrm{diag} \{ \boldsymbol{m}_{\mathrm{u}}, \, \boldsymbol{m}_{\mathrm{d}}, \, \boldsymbol{m}_{\mathrm{s}} \}.$$
(2)

In the chiral limit, there exist global $U(3)_L \otimes U(3)_R$ symmetries.

$$P_{\rm R} = (\mathbf{1} + \gamma_5)/2, \quad P_{\rm L} = (\mathbf{1} - \gamma_5)/2, \quad \psi_{\rm L,R} = P_{\rm L,R}\psi.$$

Symmetries of the strong interaction

SYMMETRY	Local gauge	Global chiral	Local chiral	
Theory	QCD	NJL	Chiral EFTs	
Dof	Quarks and gluons	Quarks	Mesons or baryons	
Energy scale	0 to $\Lambda_{ m GUT}$	0 to $1{ m GeV}$	Dof dependent	~ ~
				くい

Consider color singlet four-fermion interactions in the three-flavor NJL model. The Lagrangian is given by [Klimt:1989pm]

$$\mathcal{L}_{\mathrm{NJL,SU(3)}}^{(4)} = \overline{\psi}(i\partial - m)\psi + \mathbf{G}_{\pi} \sum_{i=0}^{8} \left[\left(\overline{\psi}\lambda^{i}\psi \right)^{2} + \left(\overline{\psi}i\gamma_{5}\lambda^{i}\psi \right)^{2} \right] - \mathbf{G}_{\rho} \sum_{i=0}^{8} \left[\left(\overline{\psi}\gamma_{\mu}\lambda^{i}\psi \right)^{2} + \left(\overline{\psi}\gamma_{\mu}\gamma_{5}\lambda^{i}\psi \right)^{2} \right] - \mathbf{G}_{\mathrm{V}} \left(\overline{\psi}\gamma_{\mu}\psi \right)^{2} - \mathbf{G}_{\mathrm{A}} \left(\overline{\psi}\gamma_{\mu}\gamma_{5}\psi \right)^{2}.$$
(3)

 $SU(3)_V \otimes SU(3)_A \otimes U(1)_V \otimes U(1)_A$ (isospin) (chiral) (baryonic) (axial) Chiral symmetry is broken by

- nonvanishing quark mass,
- dynamics.

The U(1)_A symmetry is broken by field theory effects, which can be accounted for in the NJL model by adding a determinant term:

$$\mathcal{L}_{det} = \mathbf{G}_{D} \left[\det \overline{\psi} (1 + \gamma_5) \psi + \det \overline{\psi} (1 - \gamma_5) \psi \right].$$
 (4)

Determinants are taken in the flavor space, resulting in six-fermion interactions.

In the two-flavor scenario, the NJL Lagrangian is reduced into

$$\mathcal{L}_{\mathrm{NJL,SU(2)}} = \overline{\psi}(i\partial \!\!\!/ - m)\psi + \frac{G_{\pi}}{2} \left[(\overline{\psi}\psi)^2 - (\overline{\psi}\gamma_5 \overrightarrow{\tau}\psi)^2 \right] \\ - \frac{G_{\rho}}{2} \left[(\overline{\psi}\gamma_{\mu}\overrightarrow{\tau}\psi)^2 - (\overline{\psi}\gamma_{\mu}\gamma_5 \overrightarrow{\tau}\psi)^2 \right] \\ - G_{\mathrm{V}} \left(\overline{\psi}\gamma_{\mu}\psi \right)^2 - G_{\mathrm{A}} \left(\overline{\psi}\gamma_{\mu}\gamma_5\psi \right)^2, \tag{5}$$

which is consistent with the three-flavor Lagrangian when determinant terms are added.

Explicitly the two-flavor determinant terms are given by

$$\det \overline{\psi}(1+\gamma_5)\psi + \det \overline{\psi}(1-\gamma_5)\psi \\= 2\{\overline{u}u\,\overline{d}d + \overline{u}\gamma_5 u\overline{d}\gamma_5 d - \overline{u}d\,\overline{d}u - \overline{u}\gamma_5 d\,\overline{d}\gamma_5 u\}.$$
(6)

▲□▶▲□▶▲≡▶▲≡▶ ≡ ∽へ⊙

The effective Hamiltonian on the light front

The two-body interactions of the effective Hamiltonian are given by: (light front holography) × (massive fermions) + (longitudinal confinement) [Li:2015zda,Li:2017mlw] :

$$H_{0} = \frac{\overrightarrow{k}_{\perp}^{2} + \mathbf{m}^{2}}{x} + \frac{\overrightarrow{k}_{\perp}^{2} + \overline{\mathbf{m}}^{2}}{1 - x} + \kappa^{4} x (1 - x) r_{\perp}^{2} - \frac{\kappa^{4}}{(\mathbf{m} + \overline{\mathbf{m}})^{2}} \partial_{x} x (1 - x) \partial_{x}.$$
(7)

We truncate the light front wavefunction at the valance Fock sector

$$\begin{split} \left|\Psi_{\mathrm{meson}}(P^{+},\overrightarrow{P}^{\perp},j,m_{j})\right\rangle \\ &=\sum_{r,s}\int_{0}^{1}\frac{dx}{4\pi x(1-x)}\int\frac{d\overrightarrow{\kappa}^{\perp}}{(2\pi)^{2}}\psi_{rs}(x,\overrightarrow{\kappa}^{\perp}) \\ &\times b_{r}^{\dagger}(xP^{+},\overrightarrow{\kappa}^{\perp}+x\overrightarrow{P}^{\perp})d_{s}^{\dagger}((1-x)P^{+},-\overrightarrow{\kappa}^{\perp}+(1-x)\overrightarrow{P}^{\perp})|0\rangle, \quad (8) \end{split}$$
with $P=k+p, x=k^{+}/P^{+}$, and $\overrightarrow{\kappa}^{\perp}=\overrightarrow{k}^{\perp}-x\overrightarrow{P}^{\perp}.$

The choice of basis functions

$$\psi_{rs}(x,\vec{\kappa}^{\perp}) = \sum_{nml} \psi(n,m,l,r,s) \phi_{nm} \left(\frac{\vec{\kappa}^{\perp}}{\sqrt{x(1-x)}}\right) \chi_{l}(x).$$
(9)

► The transverse basis function is given by

$$\phi_{nm}\left(\overrightarrow{q}^{\perp};b\right) = \frac{1}{b}\sqrt{\frac{4\pi n!}{(n+|m|)!}} \left(\frac{|\overrightarrow{q}^{\perp}|}{b}\right)^{|m|} \exp\left(-\frac{\overrightarrow{q}^{\perp 2}}{2b^2}\right) L_n^{|m|}\left(\frac{\overrightarrow{q}^{\perp 2}}{b^2}\right) e^{im\varphi},$$
(10)

with $tan(\varphi) = q^2/q^1$ and $L_n^{|m|}$ being the associated Laguerre polynomial.

► While for the longitudinal basis, we have

$$\chi_{I}(x;\alpha,\beta) = \sqrt{4\pi(2I+\alpha+\beta+1)} \sqrt{\frac{\Gamma(I+1)\Gamma(I+\alpha+\beta+1)}{\Gamma(I+\alpha+1)\Gamma(I+\beta+1)}} \times x^{\beta/2}(1-x)^{\alpha/2} P_{I}^{(\alpha,\beta)}(2x-1), \qquad (11)$$

where $P_{I}^{(\alpha,\beta)}(z)$ is the Jacobi polynomial.

$$\alpha = \frac{2\overline{\mathbf{m}}(\mathbf{m} + \overline{\mathbf{m}})}{\kappa^2}, \qquad \beta = \frac{2\mathbf{m}(\mathbf{m} + \overline{\mathbf{m}})}{\kappa^2}. \qquad (12)$$

The matrix elements for the effective Hamiltonian

$$\left\langle \Psi_{\text{meson}} \left(P^{\prime +}, \overrightarrow{P}^{\prime \perp}, j^{\prime}, m_{j}^{\prime} \right) \left| H_{\text{eff}} \right| \Psi_{\text{meson}} \left(P^{+}, \overrightarrow{P}^{\perp}, j, m_{j} \right) \right\rangle$$

$$= 4\pi P^{+} \delta \left(P^{\prime +} - P^{+} \right) (2\pi)^{2} \delta \left(\overrightarrow{P}^{\prime \perp} - \overrightarrow{P}^{\perp} \right) \sum_{r^{\prime}, s^{\prime}} \sum_{r, s}$$

$$\times \int_{0}^{1} \frac{dx^{\prime}}{4\pi x^{\prime} (1 - x^{\prime})} \int \frac{d\overrightarrow{\kappa}^{\prime \perp}}{(2\pi)^{2}} \int_{0}^{1} \frac{dx}{4\pi x (1 - x)} \int \frac{d\overrightarrow{\kappa}^{\perp}}{(2\pi)^{2}}$$

$$\times \psi_{r^{\prime}s^{\prime}}^{*} (x^{\prime}, \overrightarrow{\kappa}^{\prime \perp}) H_{\text{eff} r^{\prime}s^{\prime}rs} (x^{\prime}, \overrightarrow{\kappa}^{\prime \perp}, x, \overrightarrow{\kappa}^{\perp}) \psi_{rs} (x, \overrightarrow{\kappa}^{\perp}).$$
(13)

When $\kappa = b$, the two-body interaction H_0 is diagonal in the basis representation:

$$\Lambda_0(n, m, l; \mathbf{m}, \overline{\mathbf{m}}, \kappa) = (\mathbf{m} + \overline{\mathbf{m}})^2 + 2\kappa^2 (2n + |m| + l + 3/2) + \frac{\kappa^4}{(\mathbf{m} + \overline{\mathbf{m}})^2} l(l+1).$$
(14)

The matrix elements of the NJL interaction

The flavor decomposition of the direct four-fermion interaction relevant for the valence Fock sector is

$$\begin{split} &\int dx^{-} \int d\overrightarrow{x}^{\perp} \overline{\psi}_{\mathrm{Q}}(x) \gamma^{?} \psi_{\mathrm{Q}}(x) \overline{\psi}_{\mathrm{P}}(x) \gamma^{?} \psi_{\mathrm{P}}(x) \\ &\rightarrow \sum_{s1234} \int d\underline{k}_{1234} \, 4\pi \delta(k_{1}^{+} + k_{2}^{+} - k_{3}^{+} - k_{4}^{+}) \\ &\times (2\pi)^{2} \delta\left(k_{1}^{\perp} + k_{2}^{\perp} - k_{3}^{\perp} - k_{4}^{\perp}\right) \\ &\times \left\{ b_{\mathrm{Q1}}^{\dagger} d_{\mathrm{Q2}}^{\dagger} d_{\mathrm{P3}} b_{\mathrm{P4}} \, \overline{u}_{\mathrm{Q1}} \gamma^{?} v_{\mathrm{Q2}} \, \overline{v}_{\mathrm{P3}} \gamma^{?} u_{\mathrm{P4}} \right. \\ &+ b_{\mathrm{P1}}^{\dagger} d_{\mathrm{P2}}^{\dagger} d_{\mathrm{Q3}} b_{\mathrm{Q4}} \, \overline{u}_{\mathrm{P1}} \gamma^{?} v_{\mathrm{P2}} \, \overline{v}_{\mathrm{Q3}} \gamma^{?} u_{\mathrm{Q4}} \\ &- b_{\mathrm{Q1}}^{\dagger} d_{\mathrm{P2}}^{\dagger} d_{\mathrm{P3}} b_{\mathrm{Q4}} \overline{u}_{\mathrm{Q1}} \gamma^{?} u_{\mathrm{Q4}} \, \overline{v}_{\mathrm{P3}} \gamma^{?} v_{\mathrm{P2}} \\ &- b_{\mathrm{P1}}^{\dagger} d_{\mathrm{Q2}}^{\dagger} d_{\mathrm{Q3}} b_{\mathrm{P4}} \overline{u}_{\mathrm{P1}} \gamma^{?} u_{\mathrm{P4}} \, \overline{v}_{\mathrm{Q3}} \gamma^{?} v_{\mathrm{Q2}} \right\}. \end{split}$$

Direct and exchange interactions are related by the Fierz transformations.

$$s
ightarrow rac{1}{4}(s+v+rac{t}{2}-a-p)$$

 $p
ightarrow -rac{1}{4}(s-v+rac{t}{2}+a-p)$
 $v
ightarrow rac{1}{4}(4s-2v-2a+4p)$
 $a
ightarrow -rac{1}{4}(4s+2v+2a+4p)$

< ロ > < 団 > < 国 > < 国 > < 国 > < 国 > の<(?)

Example: scalar matrix elements for the basis expansion

$$\begin{array}{c|c} s_{1}'s_{2}'s_{2}s_{1} & \langle n'm'l's_{1}'s_{2}'|\overline{u}_{u}u_{u}\,\overline{v}_{d}v_{d}|nmls_{1}s_{2} \rangle \\ & + (-1)^{n'+n+1}(b^{2}/\pi)\delta_{m',0}\delta_{m,0}\mathbf{m}\overline{\mathbf{m}}\{L'(1/2,1/2)L(-1/2,-1/2) \\ & + L'(-1/2,1/2)L(1/2,-1/2)+L'(1/2,-1/2)L(-1/2,1/2) \\ & + L'(-1/2,-1/2)L(1/2,1/2)\} \\ & \cdots & \cdots \end{array}$$

$$L_{l}(a,b;\alpha,\beta) \equiv \int_{0}^{1} \frac{dx}{4\pi} x^{b} (1-x)^{a} \chi_{l}(x;\alpha,\beta)$$

$$= \sqrt{\frac{2l+\alpha+\beta+1}{4\pi}} \sqrt{\frac{\Gamma(l+1)\Gamma(l+\alpha+\beta+1)}{\Gamma(l+\alpha+1)\Gamma(l+\beta+1)}}$$

$$\times \sum_{m=0}^{l} \binom{l+\alpha}{m} \binom{l+\beta}{l-m} (-1)^{l-m} B\left(\frac{\beta}{2}+b+m+1,\frac{\alpha}{2}+a+l-m+1\right),$$
(15)

where $B(s,t) = \Gamma(s)\Gamma(t)/\Gamma(s+t)$ is the Euler Beta function =

Two-flavor NJL

Consider the interaction:

$$\mathcal{H}_{\mathrm{NJL}\,\pi}^{\mathrm{eff}} = -\frac{G_{\mathrm{P}\pi}}{2} P^{+} \left[(\overline{\psi}\psi)^{2} + (\overline{\psi}i\gamma_{5}\overrightarrow{\tau}\psi)^{2} \right], \qquad (16)$$

responsible for the binding of π^{\pm} .

- Symmetries preserved: $SU(2)_V \otimes SU(2)_A \otimes U(1)_V$.
- ► The binding of ρ[±] is already taken care of by the confinement interaction in the basis diagonal Hamiltonian.

Three-flavor NJL

• For the binding of K^{\pm} :

$$\mathcal{H}_{\mathrm{NJL}\,K+}^{\mathrm{eff}} = -G_{\mathrm{P}K}P^{+}[(\overline{\psi}\lambda_{a}\psi)^{2} - (\overline{\psi}\lambda_{a}\gamma_{5}\psi)^{2}]. \tag{17}$$

► The expansion in flavor space is given by

$$(\overline{\psi} \lambda_a \gamma^? \psi)^2 = (\overline{u} \gamma^? u + \overline{d} \gamma^? d)^2 + (\overline{u} \gamma^? d + \overline{d} \gamma^? u)^2 + 2[(\overline{s} \gamma^? s)^2 + 2 \overline{u} \gamma^? s \overline{s} \gamma^? u + 2 \overline{d} \gamma^? s \overline{s} \gamma^? d].$$
(18)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ▶ ▲□ ▶ ▲□

With these input parameters

BLFQ-NJL	model parameters	κ	$369.5 \mathrm{MeV}$	$N_{ m max}$	8
$m_{ m l}$	222.2 MeV	$G_{\mathrm{P}\pi}$	$6.340 \ { m GeV}^{-2}$	$M_{ m max}$	2
m _s	398.8 MeV	$G_{\mathrm{P}K}$	$7.326 \ { m GeV}^{-2}$	$L_{\rm max}$	8

the BLFQ-NJL model produces

	Mass (MeV) Dee		cay constant (${ m MeV}$)			Charge radius $({\rm fm}^2)$		
π^+	139.57		148.08			0.263		
ρ^+	775.26		121.02			0.773		
K^+	493.68		177.77		0.250			
K^{*+}	891.76	106.30				0.608		
K_{0}^{*+}	790.21		49.05			_		
$\overline{\mu_{ ho^+} = \mu_{K^{*+}} = 2}, \mathcal{Q}_{ ho^+} = -0.0335 \text{ fm}^2, \mathcal{Q}_{K^{*+}} = -0.0283 \text{ fm}^2$								
Charge radius (fm ²)			π^+	K^+		$ ho^+$	K^{*+}	
BLFQ-NJL			0.263	0.250		0.773	0.608	
Hutauruk:2016sug			0.396	0.343				
Carrillo-Serrano:2015uca						0.67		
PDG			0.452(10)	0.256(3	3)			

Elastic form factors for light mesons

The matrix elements of the electromagnetic current are given by

$$\langle \psi(P',m_j')|J^{\mu}(x)|\psi(P,m_j)\rangle = 2P^+ I^{\mu}_{mj,mj'}(Q^2) e^{iq\cdot x}, \qquad (19)$$

with $Q^2 = -q^2 = -(P' - P)^2$. In the Drell-Yan frame $q^+ = 0$. Using the + component of the current operator, Drell-Yan-West formula:

$$I_{mj,mj'}^{+}(Q^{2}) = \sum_{ss'} \int_{0}^{1} \frac{dx}{4\pi x(1-x)} \int \frac{d\vec{k}^{\perp}}{(2\pi)^{2}} \\ \times \psi_{mj'}^{*}(k^{\perp} + (1-x)q^{\perp}, x, s, s') \psi_{mj}(k^{\perp}, x, s, s'), \quad (20)$$

where $Q^2 = -q^{\perp 2}$.

- ► For pseudoscalar mesons, $G_0(Q^2) = I_{0,0}^+(Q^2)$.
- For vector mesons, Grach and Kondratyuk prescription:

$$G_{\rm E} = \frac{1}{3} \left[(3 - 2\eta) I_{1,1}^+ + 2\sqrt{2\eta} I_{1,0}^+ + I_{1,-1}^+ \right]$$
(21)

$$G_{\rm M} = 2 \left[I_{1,1}^+ - I_{1,0}^+ / \sqrt{2\eta} \right]$$
(22)

$$G_{\rm Q} = \frac{2\sqrt{2}}{3} \left[-\eta I_{1,1}^+ + \sqrt{2\eta} I_{1,0}^+ - I_{1,-1}^+ \right], \qquad (23)$$

with $\eta = Q^2/(4m_{
m h}^2)$.

Elastic form factors for light mesons

For vector mesons, the wavefunctions are (almost entirely) given by

$$\psi(k^{\perp},x) \sim x^{\beta/2}(1-x)^{\alpha/2} \exp\left(-\frac{k^{\perp 2}}{2b^2}\right) \times \begin{cases} |++\rangle \\ |+-\rangle+|-+\rangle \\ |--\rangle \end{cases}$$
 (24)

▲□▶▲□▶▲□▶▲□▶ ▲□▶ □ のへで

- \blacktriangleright Flavor singlet mesons $\eta,~\eta',~\omega$ and ϕ
- Neutral Kaons K^0 , \overline{K}^0
- Self-energy corrections
- Excited states
- Higher Fock sector contributions, sea quarks and gluons

≡▶ ≡ のへで

≡▶ ≡ ∽へや

Spin matrix elements for the direct scalar interaction

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- The *u*-spinor mass is \mathbf{m} . The *v*-spinor mass is $\overline{\mathbf{m}}$.
- The q' and q are the transverse momenta to be integrated.