Mesons Structure in the Nuclear Medium PIEIC 2018 - Workshop on Pion and Kaon Structure at an Electron - Ion Collider The Catholic University of America Washington, D.C. May 24-25 - 2018

J. Pacheco B. C. de Melo

^aLaboratório de Física Téorica e Computacional-LFTC, UNICSUL (São Paulo - Brazil) Collaborators: K. Tsushima (LFTC-UCS), T. Frederico (ITA), B. El-Bennich (LFTC-UCS), G. Yabuzaki (ITA, LFTC-UCS), W. de Paula (ITA), R. Moreira (ITA, LFTC-UCS)(Brazil), E. Rojas (Medelin,Colombia, LFTC-UCS,Brazil), Isthiag Ahmed (Pakistan)

25 de May, 2018

()

Outline

- Light-Front: Motivations
- Overview of the Light-Front
- Electromagnetic Current: General
- Medium
- Pion in the Medium
- Kaon in the Medium: QMC model + LFCQM
- Distribuition Amplitudes
- Particle S=1: Rho Meson
- Plus Component of the Electromagnetic Current
- Rho Meson Wave Function
- 🕕 Angular Condition
 - Prescriptions
 - Pair Terms Combination
 - A Results
 - Rho Meson: Medium Results
 - 6 Conclusions

• Ligh-Front is the Ideal Framework to Describe Hadronic Bound **States**

- Ligh-Front is the Ideal Framework to Describe Hadronic Bound States
- Constituent Picture and Unanbiguous Partons Content of the Hadronic System

・ 同 ト ・ ヨ ト ・ ヨ ト

- Ligh-Front is the Ideal Framework to Describe Hadronic Bound States
- Constituent Picture and Unanbiguous Partons Content of the Hadronic System
- Light-Front Wavefunctions: Representation of Composite Systems in QFT

伺 ト イヨト イヨト

- Ligh-Front is the Ideal Framework to Describe Hadronic Bound States
- Constituent Picture and Unanbiguous Partons Content of the Hadronic System
- Light-Front Wavefunctions: Representation of Composite Systems in QFT
- Invariant Under Boosts
- Light-Front Vacuum is Trivial

伺 と く ヨ と く ヨ と

- Ligh-Front is the Ideal Framework to Describe Hadronic Bound States
- Constituent Picture and Unanbiguous Partons Content of the Hadronic System
- Light-Front Wavefunctions: Representation of Composite Systems in QFT
- Invariant Under Boosts
- Light-Front Vacuum is Trivial
- After Integrate in k^- : Bethe-Salpeter Amplitude (Wave Function)

くゆ くちょう くちょ

- Ligh-Front is the Ideal Framework to Describe Hadronic Bound States
- Constituent Picture and Unanbiguous Partons Content of the Hadronic System
- Light-Front Wavefunctions: Representation of Composite Systems in QFT
- Invariant Under Boosts
- Light-Front Vacuum is Trivial
- After Integrate in k⁻: Bethe-Salpeter Amplitude (Wave Function)
- LF Lorentz Invariant Hamiltonian: $P^2 = P^+P^- P_{\perp}^2$

Light-Front Coordinates

$${\sf Four-Vector} \ \ \Longrightarrow \ \ x^\mu = \left(x^0, x^1, x^2, x^3\right) \ = \ \left(x^+, x^-, x_\perp\right)$$

 $x^+ = t + z$ $x^+ = x^0 + x^3 \implies$ Time $x^- = t - z$ $x^- = x^0 - x^3 \implies$ Position

Metric Tensor and Scalar product

$$x \cdot y = x^{\mu}y_{\mu} = x^{+}y_{+} + x^{-}y_{-} + x^{1}y_{1} + x^{2}y_{2} = \frac{x^{+}y^{-} + x^{-}y^{+}}{2} - \vec{x}_{\perp}\vec{y}_{\perp}$$

$$p^+ = p^0 + p^3 \ , \ p^- = p^0 - p^3 \ , \ p^\perp = (p^1, p^2)$$

Dirac Matrix and Electromagnetic Current

$$\gamma^{+} = \gamma^{0} + \gamma^{3} \implies$$
 Electr. Current $J^{+} = J^{0} + J^{3}$
 $\gamma^{-} = \gamma^{0} - \gamma^{3} \implies$ Electr. Current $J^{-} = J^{0} - J^{3}$
 $\gamma^{\perp} = (\gamma^{1}, \gamma^{2}) \implies$ Electr. Current $J^{\perp} = (J^{1}, J^{2})$

$$p^{\mu}x_{\mu} = \frac{p^{+}x^{-}+p^{-}x^{+}}{2} - \vec{p}_{\perp}\vec{x}_{\perp}$$

 $x^+, x^-, \vec{x_{\perp}} \implies p^+, p^-, \vec{p}_{\perp}$

- 4 同 2 4 日 2 4 日 2

 $p^- \implies$ Light-Front Energy

$$p^2 = p^+ p^- - (ec{p}_\perp)^2 \Longrightarrow \quad p^- = rac{(ec{p}_\perp)^2 + m^2}{p^+}$$

On-shell

Bosons \implies $S_F(p) = \frac{1}{p^2 - m^2 + i\epsilon}$

Fermions
$$\implies$$
 $S_F(p) = \frac{p + m}{p^2 - m^2 + i\epsilon} + \frac{\gamma^+}{2p^+}$

Review Papers:

- Phys. Rept. 301, (1998) 299-486, Brodsky, Pauli and Pinsky
- <u>A. Harindranath</u>, Pramana, Journal of Indian Academy of Sciences Physics Vol.55, Nos 1 & 2, (2000) 241.
- An Introduction to Light-Front Dynamics for Pedestrians <u>Avaroth Harindranath</u>

Light-Front book organizers: James Vary and Frank Wolz, (1997)

(김희) 김 말에 귀엽이 말.

(a) \Rightarrow Valence Component of the Electromagnetic Current (b) \Rightarrow Non-Valence Component of the Electromagnetic Current Ref.: de Melo and Frederico, PRC (1997), de Melo, Naus, Frederico and Sauer, PRC(1999)

25 de May, 2018

7 / 72

Effective Lagrangian to Vertex $\pi \rightarrow q\bar{q}$

$$\mathcal{L}_{I} = -\imath \frac{m}{f_{\pi}} \vec{\pi} \cdot \overline{q} \gamma^{5} \vec{\tau} q$$

• Electromagnetic Current: J_{π}^+

$$J^{\mu} = -i2e \frac{m^2}{f_{\pi}^2} N_c \int \frac{d^4k}{(2\pi)^4} Tr[S(k)\gamma^5 \times S(k-P')\gamma^{\mu}S(k-P)\gamma^5\Lambda(k,P')\Lambda(k,P)]$$

$$S(p) = \frac{1}{p - m + i\epsilon}$$

- 4 同 2 4 日 2 4 日 2

- Vertex Function
- Symmetric Vertex Function

$$\Lambda(k,P) = \frac{N}{(k^2 - m_R^2 + i\epsilon)} + \frac{N}{((P-k)^2 - m_R^2 + i\epsilon)}$$

- Ref. Nucl. Phys. A 707 (2002) 399-424
- Nonsymmetric Vertex Function

$$\Lambda(k,P) = \frac{N}{((P-k)^2 - m_R^2 + i\epsilon)}$$

• J.P.B.C. de Melo, T. Frederico and H.L. Naus, Phy.Rev. **C59** (1999) 2278

• Frame

$$\begin{array}{rcl} q^+ &=& -q^- = \sqrt{-q^2} \sin \alpha \\ q_x &=& \sqrt{-q^2} \cos \alpha, \ q_y = 0 \\ q^2 &=& q^+ q^- - (q_\perp)^2 \ . \end{array}$$

- Breit Frame $(\alpha = 0) \implies q^+ \rightarrow 0 , q^- = 0 ; \ \vec{q} \neq 0$
- $J_{\pi}^+ = J^0 + J^3 \Longrightarrow$ No Pair Term Contribuition
- $J_{\pi}^{-} = J^{0} J^{3} \Longrightarrow$ Pair Term Contribution
- de Melo, Frederico, Pace and Salmé, NPA 707 (2002) 399
- de Melo, Frederico and Naus, PRC 59 (1999) 2278

Wave Function, Pion // Kaon

$$egin{aligned} \Psi(x,k_{\perp},p^+,ec{p}_{\perp}) &\propto & iggl[rac{1}{(1-x)(m_{0^-}^2-\mathcal{M}^2(m_q^2,m_R^2))} \ &+ & rac{1}{x(m_{0^-}^2-\mathcal{M}^2(m_R^2,m_{ar{q}}^2))} iggr] rac{1}{m_{0^-}^2-\mathcal{M}^2(m_q^2,m_{ar{q}}^2)}, \ &+ & [q\leftrightarrowar{q}] \end{aligned}$$

here:

$$\mathcal{M}^2(m_a^2, m_b^2) = rac{k_{\perp}^2 + m_a^2}{x} + rac{(p-k)_{\perp}^2 + m_b^2}{(1-x)} - p_{\perp}^2$$

- In the case of quarks mass \Rightarrow Free Mass Operador
- $m_{0^-} \iff Mass of the bound state$

Motivation: The present model work well (Symmetric Vertex)!

Observables: Decay constant and charge radius						
	f ₀₋ (MeV)	<i>r</i> ₀ -	$m_u (\pi^+)$	$m_d~(\pi^+)$	$m_d \ (K^+)$	$m_{\overline{s}} (K^+)$
Pion	93.12	0.736	220	220		
	101.85	0.670	250	250		
Kaon	101.81	0.754			220	440
	113.74	0.687			250	440
$m_R = 600 \ MeV$, (all masses in MeV and radius in fm)						
Ex.(Pion): $f_{\pi} = 92.4 \pm 0.021$ MeV, $r_{\pi} = 0.672 \pm 0.08$ fm (PDG)						
Ex.(Kaon): $f_{k^+} = 110.38 \pm 0.1413$ MeV, $r_{k^+} = 0.560 \pm 0.031$ (PDG)						

Ref.: de Melo, Frederico, Pace and Salmè, NPA707, 399 (2002);
ibid., Braz. J. Phys. 33, 301 (2003)
Yabusaki, Ahmed, Paracha, de Melo, El-Bennich, PRD92 (2015) 034017.

Quark Meson Coupling Model (QMC): Basic Ingredients

• QMC Lagrangian:

$$\mathcal{L} = ar{\psi}[i\gamma\cdot\partial - m_{N}^{*}(\hat{\sigma}) - g_{\omega}\hat{\omega}^{\mu}\gamma_{\mu}]\psi + \mathcal{L}_{ ext{meson}}$$

- ψ , $\hat{\sigma}$ and $\hat{\omega}$: Nucleon, Lorentz-scalar-isoscalar σ , and Lorentz-vector-isoscalar ω field operators,
- *σ*-Field Coupling Constant:

$$m_N^*(\hat{\sigma}) = m_N - g_\sigma(\hat{\sigma})\hat{\sigma},$$

• Free meson Lagrangian is:

$$\mathcal{L}_{ ext{meson}} = rac{1}{2} (\partial_{\mu} \hat{\sigma} \partial^{\mu} \hat{\sigma} - m_{\sigma}^2 \hat{\sigma}^2) - rac{1}{2} \partial_{\mu} \hat{\omega}_{
u} (\partial^{\mu} \hat{\omega}^{
u} - \partial^{
u} \hat{\omega}^{\mu}) + rac{1}{2} m_{\omega}^2 \hat{\omega}^{\mu} \hat{\omega}_{\mu} \; ,$$

Medium

- Present work: Nuclear matter in Rest Frame
- Also: Symmetric Nuclear Matter Case: (Mean-field Approximation)
- Nucleon Fermi momentum $k_{\rm F}$ // scalar density, Conected Sigma-mean Field

$$\rho (Baryon) = \frac{4}{(2\pi)^3} \int d\vec{k} \ \theta(k_F - |\vec{k}|) = \frac{2k_F^3}{3\pi^2},$$

$$\rho_s (Scalar) = \frac{4}{(2\pi)^3} \int d\vec{k} \ \theta(k_F - |\vec{k}|) \frac{m_N^*(\sigma)}{\sqrt{m_N^{*2}(\sigma) + \vec{k}^2}},$$

• $m_N^*(\sigma)$: Effective nucleon mass at some density: with QMC model

14 / 72

• Dirac Equation: Light quark and antiquark

$$\begin{bmatrix} i\gamma \cdot \partial_{x} - (m_{q} - V_{\sigma}^{q}) \mp \gamma^{0} \left(V_{\omega}^{q} + \frac{1}{2}V_{\rho}^{q} \right) \end{bmatrix} \begin{pmatrix} \psi_{u}(x) \\ \psi_{\bar{u}}(x) \end{pmatrix} = 0, \\ \begin{bmatrix} i\gamma \cdot \partial_{x} - (m_{q} - V_{\sigma}^{q}) \mp \gamma^{0} \left(V_{\omega}^{q} - \frac{1}{2}V_{\rho}^{q} \right) \end{bmatrix} \begin{pmatrix} \psi_{d}(x) \\ \psi_{\bar{d}}(x) \end{pmatrix} = 0,$$

- Coulomb Interaction: Neglete
- SU(2) Symmetry: $m_q = m_u = m_d$

- 3

15 / 72

・ロト ・同ト ・ヨト ・ヨト

Medium

• Bag radius in medium: $R_{\rho}^* \Rightarrow$ Stability Condition for the mass of the Hadron

Obs. Eigenenergies in units of $1/R_{\rho}^*$

$$\begin{pmatrix} \epsilon_{u} \\ \epsilon_{\bar{u}} \end{pmatrix} = \Omega_{q}^{*} \pm R_{\rho}^{*} \left(V_{\omega}^{q} + \frac{1}{2} V_{\rho}^{q} \right),$$

$$\begin{pmatrix} \epsilon_{d} \\ \epsilon_{\bar{d}} \end{pmatrix} = \Omega_{q}^{*} \pm R_{\rho}^{*} \left(V_{\omega}^{q} - \frac{1}{2} V_{\rho}^{q} \right),$$

$$\epsilon_{Q} = \epsilon_{\bar{Q}} = \Omega_{Q}.$$

• Rho Meson Masse, m_{ρ}^* :

$$m_{h}^{*} = \sum_{j=q,\bar{q}} \frac{n_{j}\Omega_{j}^{*} - z_{\rho}}{R_{\rho}^{*}} + \frac{4}{3}\pi R_{\rho}^{*3}B, \quad \frac{\partial m_{\rho}^{*}}{\partial R_{\rho}}\Big|_{R_{\rho}=R_{\rho}^{*}} = 0, \quad (1)$$

- $\Omega_q^* = \Omega_{\bar{q}}^* = [x_q^2 + (R_\rho^* m_q^*)^2]^{1/2}$, $m_q^* = m_q g_\sigma^q \sigma$,
- x_q Lowest bag eigenfrequencies
- QMC Review: K. Saito, K. Tsushima and A. W. Thomas Prog. Part. Nucl. Phys. 58 (2007) 1

Table : The MIT bag model quantities and coupling constants, the parameter Z_N , bag constant B (in $B^{1/4}$), and the properties for symmetric nuclear matter at normal nuclear matter density $\rho_0 = 0.15 \text{ fm}^{-3}$, for $m_q = 5$, 220 and 430 MeV. The effective nucleon mass, m_N^* , and the nuclear incompressibility, K, are quoted in MeV (the free nucleon bag radius used is $R_N = 0.8$ fm, the standard value in the QMC model.

$m_q(MeV)$	$g_{\sigma}^2/4\pi$	$g_{\omega}^2/4\pi$	m_N^*	K	Z _N	$B^{1/4}({\sf MeV})$
5	5.39	5.30	754.6	279.3	3.295	170
220	6.40	7.57	698.6	320.9	4.327	148
430	8.73	11.93	565.25	361.4	5.497	69.75

QMC (Quark Meson Coupling)* "plus" Light-Front

- Hatree Mean Field Approximation: $\Rightarrow p^{\mu} \longrightarrow p^{\mu} + V^{\mu}$
- Vector
- $p^{\mu} \pm \delta^{\mu}_{0} V^{q}_{\omega} = \begin{cases} +, \text{ quark} \\ -, \text{ antiquark} \end{cases}$
- Scalar: V_s
- \Rightarrow m_q \longrightarrow $m_q^* + V_s$ here $V_s = m_q V_\sigma^q$
- * Ref.: K. Saito, K. Tsushima and A. W. Thomas, Progress Part. Phys. 58 (2007) 1

18 / 72

• Propagadors for Quarks in the Mediun

$$S^*(p+V) = rac{1}{p\!\!/ - V\!\!/ - m_q^* + \imath\epsilon}$$

• Vertex $q\pi\bar{q}$ in Medium

$$\Lambda^{*}(k+V,P) = \frac{C^{*}}{((k+V)^{2} - m_{R}^{2} + i\epsilon)} + \frac{C^{*}}{((P-k-V)^{2} - m_{R}^{2} + i\epsilon)}$$

• Effective Lagrangian in the Medium

$$\mathcal{L}_{I} = -ig^{*}\vec{\Phi}\cdot\overline{q}\gamma^{5}\vec{\tau}q\Lambda^{*}$$

★ de Melo, K. Tsushima, B. El-Bennich, E. Rojas and T, Frederico, PRC90 (2014) 035201

3

- 4 同 2 4 日 2 4 日 2

Valence Light-front wave function in the Medium

$$\Phi^{*}(k^{+}, \vec{k}_{\perp}; P^{+}, \vec{P}_{\perp}) = \frac{P^{+}}{m_{\pi}^{*2} - M_{0}^{2}} \left[\frac{N^{*}}{(1 - x)(m_{\pi}^{*2} - \mathcal{M}^{2}(m_{q}^{*2}, m_{R}^{2}))} + \frac{N^{*}}{x(m_{\pi}^{*2} - \mathcal{M}^{2}(m_{R}^{2}, m_{q}^{*2}))} \right]$$

-

•
$$x = k^+/P^+$$
, with $0 \le x \le 1$
• $\mathcal{M}^2(m_a^2, m_b^2) = \frac{k_\perp^2 + m_a^2}{x} + \frac{(P-k)_\perp^2 + m_b^2}{1-x} - P_\perp^2$

• Free Square Mass operador: $M_0^2 = \mathcal{M}^2(m_q^{*2}, m_q^{*2})$.

- B

• Pion Electromagnetic Form Factor in the Breit, $q^+ = 0$:

$$F_{\pi}^{*(WF)}(q^{2}) = \frac{1}{2\pi^{3}(P'^{+} + P^{+})} \int \frac{d^{2}k_{\perp}dk^{+}\theta(k^{+})\theta(P^{+} - k^{+})}{k^{+}(P^{+} - k^{+})(P'^{+} - k^{+})} \Phi^{*}(k^{+}, \vec{k}_{\perp}; P'^{+}, \frac{\vec{q}_{\perp}}{2}) \\ \times \left(k_{\text{on}}^{-}P^{+}P'^{+} - \frac{1}{2}\vec{k}_{\perp} \cdot \vec{q}_{\perp}(P^{+} - P'^{+}) - \frac{1}{4}k^{+}q_{\perp}^{2}\right) \\ \times \Phi^{*}(k^{+}, \vec{k}_{\perp}; P^{+}, -\frac{\vec{q}_{\perp}}{2})$$

•
$$C^* \Rightarrow F^*_{\pi}(0) = 1$$

3

21 / 72

<ロ> <同> <同> < 回> < 回>

• Transverse momentum probability density

$$f^{*}(k_{\perp}) = \frac{1}{4\pi^{3}m_{\pi}^{*}} \int_{0}^{2\pi} d\phi \int_{0}^{P^{+}} \frac{dk^{+}M_{0}^{*2}}{k^{+}(P^{+}-k^{+})} \Phi^{*2}(k^{+},\vec{k}_{\perp};m_{\pi}^{*},\vec{0}),$$

• Integration of $f^*(k_{\perp})$: Probability of the valence component in the pion

$$\eta^* = \int_0^\infty dk_\perp k_\perp f^*(k_\perp).$$

• Pion decay constant

$$P_{\mu}\langle 0(\rho)|A_{i}^{\mu}|\pi_{j}^{*}\rangle=im_{\pi}^{*2}f_{\pi}^{*}\delta_{ij}\simeq im_{\pi}^{2}f_{\pi}^{*}\delta_{ij}.$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ◆ ○ ●

Results: Quark Meson Coupling + Light-Front

Symmetric Nuclear Matter - Biding Energy per Nucleon

J. Pacheco B. C. de Melo (^aLaboratório d Mesons Structure in the Nuclear Medium

25 de May, 2018

23 / 72

• Effective mass of constituent quarks, up and down

25 de May, 2018

3

_ ▶ <

æ

24 / 72

Pion properties in medium. η^* is the probability of the valence component in the pion.

ρ/ ho_0	m _q * [MeV]	f_{π}^{*} [MeV]	$< r_{\pi}^{*2} >^{1/2}$ [fm]	η^*
0.00	220	93.1	0.73	0.782
0.25	179.9	80.6	0.84	0.812
0.50	143.2	68.0	1.00	0.843
0.75	109.8	55.1	1.26	0.878
1.00	79.5	40.2	1.96	0.930

< 🗇 > <

3

• GMOR (Gell-Mann-Oakes-Renner) Relation:

$$\begin{array}{rcl} m_{\pi}^2 f_{\pi}^2 &=& -2m_q < \overline{q}q >, \\ m_{\pi}^2 f_{\pi}^{*2} &=& -2m_q^* < \overline{q}q >^* \end{array}$$

• Vacuum quarks condensate in the medium

$$\frac{\langle \overline{q}q \rangle^*}{\langle \overline{q}q \rangle} = \frac{m_q}{m_q^*} \frac{m_\pi^{*2} f_\pi^{*2}}{m_\pi^2 f_\pi^2} \simeq \frac{m_q}{m_q^*} \frac{f_\pi^{*2}}{f_\pi^2}$$

- $\rho_0 = 0.15 \ \text{fm}^{-3} \Longrightarrow \approx 0.52$ (This work)
- $ho_0~=~0.17~{\it fm^{-3}} \Longrightarrow~\approx~0.67\pm0.06$

from Kienle & Yamazaki, Prog. Part. Nucl. Phys. 52 (2004) 85.

• Exp. date in the Vacuum!!

27 / 72

• Pion Electromagnetic Radius

• Pion Decay Constant

э.

æ

A ►

Kaon: First Results

• Hartree mean field approximation

⇒ Shift of the light-quark momentum

• Due to the vector potential:

 $P^\mu
ightarrow P^{*\mu} = P^\mu + V^\mu = P^\mu + \delta^\mu_0 V^0$

• Lorentz-scalar potential:

 $ightarrow m_u^* = m_u + V_s$, $m_{\overline{s}}
ightarrow m_{\overline{s}}^* = m_{\overline{s}}$ and $(k^*)^\mu = k^\mu + \delta_0^\mu V^0$

• Fermions propagadors

$$S(p^*, m_u^*) = \frac{1}{(p^* - m_u^* + i\epsilon)}$$
$$S(p, m_s) = \frac{1}{(p - m_s + i\epsilon)}$$

• G. Yabusaki, de Melo, W. de Paula, K. Tsushima and T. Frederico, Few Body Syst. 59 (2018) no.3, 37

Kaon Results

Table : Parameters: $m_{\bar{s}} = 0.220 \text{ GeV}$, $m_{\bar{s}} = 0.440 \text{ GeV}$ and $m_R = 0.600 \text{ GeV}$

$ ho/ ho_0$	m_{K}^{+} [GeV]	m _u [GeV]	V [GeV]	$< r_{K^+}^{*2} >^{1/2} [fm]$
0.00	0.494	0.220	0.000	0.755
0.25	0.472	0.180	0.029	0.798
0.50	0.452	0.143	0.058	0.856
0.75	0.435	0.110	0.087	0.927
1.00	0.419	0.079	0.117	1.014

Table : Parameters: $m_{\overline{s}} = 0.220 \text{ GeV}$, $m_{\overline{s}} = 0.508 \text{ GeV}$ and $m_R = 0.600 \text{ GeV}$

$ ho/ ho_0$	m_{K}^{+} [GeV]	m _u [GeV]	V [GeV]	$< r_{K^+}^{*2} >^{1/2} [fm]$
0.00	0.494	0.220	0.000	0.713
0.25	0.472	0.180	0.029	0.762
0.50	0.452	0.143	0.058	0.827
0.75	0.435	0.110	0.087	0.898
1.00	0.419	0.079	0.117	0.982

J. Pacheco B. C. de Melo (^aLaboratório d Mesons Structure in the Nuclear Medium

Kaon Form Factor in Nuclear Medium to ms=440 MeV

Kaon Form Factor in Nuclear Medium to ms=508 MeV

< ロ > < 同 > < 回 > < 回 >

• $m_u = 220 \ MeV$ vacuum

3

• $m_u = 220 \ MeV$ vacuum

æ

回 と く ヨ と く ヨ と

• Hard Exclusive Pion Production

⇒ Sensitive to Pion Quark Valence Distribution: Pion DA

• El-Bennich, de Melo, Frederico, Few Body Syst. 54 (2013) 1851-1863 ibid. de Melo, El-Bennich, Frederico, Few Body Syst. 55 (2014) 373-379

Distribuition Amplitude

Def.: DA's

$$\phi^*_{ps}(x) = rac{2\sqrt{6}}{f_{ps}}\int rac{d^2 \vec{k}_\perp}{(16\pi^3)} \Psi^*_{ps}(x, \vec{k}_\perp) \; .$$

• Normalization:

$$\int_0^1 dx \int \frac{d^2 \vec{k}_{\perp}}{16\pi^3} \Psi^*(x, \vec{k}_{\perp}) = \frac{f_{ps}^*}{2\sqrt{6}}$$

• Pion Asymptotic Wave Function

$$\phi_{\pi}^{as}(x,\mu^2) \propto 6x(1-x)$$

- de Melo, Tsushima and Ahmed, Phys. Lett. B 766, (2017) 125
- Tsushima,K. and de Melo, J., Few Body Syst. 58 (2017) 85

- 3

_ ∢ ≣ ⇒

Image: A = A

Figure : Pion valence wave functions in vacuum ($\rho = 0$) [left panel] and in medium (ρ/ρ_0) [right panel] v.s. \times and $k_{\perp} = |\vec{k}_{\perp}|$, where $P^+ = m_{\pi} = m_{\pi}^*$ and $P_{\perp} = |\vec{P}_{\perp}| = 0$. The wave functions are given in the units, $10^{-8} \times (\text{GeV})^{-1}$. Notice that the differences in the vertical axis scales for the left and right panels.

Figure : Pion valence parton distribution functions (left panel). (Right) Effective pion valence parton distribution functions in vacuum and in medium, respectively multiplied by $\sqrt{\eta}$ and $\sqrt{\eta^*}$.

General Electromagnetic Current: Spin-1

$$J^{\mu}_{lphaeta}=[F_1(q^2)g_{lphaeta}-F_2(q^2)rac{q_lpha q_eta}{2m_
ho^2}]p^\mu-F_3(q^2)(q_lpha g^\mu_eta-q_eta g^\mu_lpha)\;,$$

• Polarization Vectors

$$\epsilon_x^{\mu} = (-\sqrt{\eta}, \sqrt{1+\eta}, 0, 0)$$
, $\epsilon_y^{\mu} = (0, 0, 1, 0)$, $\epsilon_z^{\mu} = (0, 0, 0, 1)$,
 $\epsilon_x^{\prime \mu} = (\sqrt{\eta}, \sqrt{1+\eta}, 0, 0)$, $\epsilon_y^{\prime \mu} = \epsilon_y$, $\epsilon_z^{\prime \mu} = \epsilon_z$,
where $\eta = q^2/4m_{\rho}^2$
• Breit Frame:
 $p_i^{\mu} = (p^0, -q_x/2, 0, 0)$ (Initial) where $p^0 = m_{\rho}\sqrt{1+\eta}$.
 $p_f^{\mu} = (p^0, q_x/2, 0, 0)$ (Final)

- 3

38 / 72

- 4 同 2 4 日 2 4 日 2 4

$$J_{ji}^{+} = i \int \frac{d^{4}k}{(2\pi)^{4}} \frac{Tr[\epsilon_{j}^{'\beta}\Gamma_{\beta}(k,k-p_{f})(k-p_{f}+m)}{((k-p_{i})^{2}-m^{2}+i\epsilon)(k^{2}-m^{2}+i\epsilon)} \\ \times \frac{\gamma^{+}(k-p_{i}+m)\epsilon_{i}^{\alpha}\Gamma_{\alpha}(k,k-p_{i})(k+m)]\Lambda(k,p_{f})\Lambda(k,p_{i})}{((k-p_{f})^{2}-m^{2}+i\epsilon)}$$

• Regulator Function

$$\Lambda(k, p_{i(f)}) = N/((p-k)^2 - m_R + i\epsilon)^2$$

• ρ -Meson Vertex

$$\Gamma^\mu(k,p)=\gamma^\mu-rac{m_
ho}{2}rac{2k^\mu-p^\mu}{p.k+m_
ho m-\imath\epsilon}$$

æ

39 / 72

イロト イポト イヨト イヨト

• Mass Squared $(x = \frac{k^+}{P^+} \implies 0 < x < 1)$

$$M^2(m_a, m_b) = rac{k_{\perp}^2 + m_a^2}{x} + rac{(ec{p} - ec{k})_{\perp}^2 + m_b^2}{1 - x} - p_{\perp}^2$$

• Free Mass $M_0^2(m, m)$ and Function $M_R^2(m, m_R)$ The function M_R^2 is given by

$$M_R^2 = \frac{k_{\perp}^2 + m^2}{x} + \frac{(\vec{p} - \vec{k})_{\perp}^2 + m_R^2}{1 - x} - p_{\perp}^2$$

$$M_0^2 = rac{k_{\perp}^2 + m^2}{x} + rac{(ec{p} - ec{k})_{\perp}^2 + m^2}{1 - x} - p_{\perp}^2$$

イロト 不得 とくほ とくほ とうほう

• Wave Function

$$\Phi_i(x, \vec{k}_\perp) = rac{N^2}{(1-x)^2(m_
ho^2 - M_0^2)(m_
ho^2 - M_R^2)^2} \vec{\epsilon}_i . [\vec{\gamma} - rac{\vec{k}}{rac{M_0}{2} + m}]$$

Refs.

- Phy.Rev. C55 (1997) 2043 J.P.B. C. de Melo and T. Frederico
- Phy.Lett. B708 (2012) 87 J.P.B. C. de Melo and T. Frederico
- Few.Body.Syst. 52 (2012) 403, J.P.B. C. de Melo and T. Frederico
- Few Body Syst. 56, (2015) 509, C. S. Mello, A. N. da Silva,
- J. P. B. C. de Melo and T. Frederico
- Few Body Syst. 56, (2015) 503, J. P. B. C. de Melo, A. N. da Silva, C. S. Mello and T. Frederico

• Instant-Form Spin Base

$$J_{ji}^{+} = \frac{1}{2} \begin{pmatrix} J_{xx}^{+} + J_{yy}^{+} & \sqrt{2}J_{zx}^{+} & J_{yy}^{+} - J_{xx}^{+} \\ -\sqrt{2}J_{zx}^{+} & 2J_{zz}^{+} & \sqrt{2}J_{zx}^{+} \\ J_{yy}^{+} - J_{xx}^{+} & -\sqrt{2}J_{zx}^{+} & J_{xx}^{+} + J_{yy}^{+} \end{pmatrix}$$

• Light-Front

$$I_{m'm}^{+} = \begin{pmatrix} I_{11}^{+} & I_{10}^{+} & I_{1-1}^{+} \\ -I_{10}^{+} & I_{00}^{+} & I_{10}^{+} \\ I_{1-1}^{+} & -I_{10}^{+} & I_{11}^{+} \end{pmatrix}$$

æ

42 / 72

イロト イポト イヨト イヨト

$$\Delta(q^2) = (1+2\eta)I_{11}^+ + I_{1-1}^+ - \sqrt{8\eta}I_{10}^+ - I_{00}^+ = (1+\eta)(J_{yy}^+ - J_{zz}^+) = 0$$

• Angular Condition: Violation !! $q_x \Longrightarrow J_{yy}^+ = J_{zz}^+ \begin{cases} Parity \\ + \\ Rotations \end{cases}$ $\Delta(q^2) \neq 0$

- Ref:
- Sov. J. Nucl. Phys. 39 (1984) 198
- I.Grach and L.A. Kondratyku
- Phy. Rev. Lett. 62 (1989) 387
- L.L. Frankfurt, I.Grach, L.A. Kondratyku and M. Strikman

25 de May, 2018

43 / 72

Prescriptions

 $\begin{cases} FFS (Frederico, Frankfurt, Strikman) \\ GK (Grach, Kondratyku) \\ CCKP (Coester, Chung, Keister, Polyzou) \\ BH (Brodsky, Hiller) \end{cases}$ vs COVARIANT Breit Frame $\implies P^+ = P'^+, P^- = P'^-, \vec{P'}_{\perp} = -\vec{P}_{\perp} = \vec{q}/2$

• **B.F:**
$$q^+ = q^0 + q^3 = 0$$

• J^+_{ρ}
{ 4 Current Matrix Elements
3 Form Factors G_0 , G_1 and G_2

44 / 72

Inna Grach Prescription: I_{00}^+

$$\begin{split} G_0^{GK} &= \frac{1}{3} [(3-2\eta) I_{11}^+ + 2\sqrt{2\eta} I_{10}^+ + I_{1-1}^+] = \\ &\quad \frac{1}{3} [J_{xx}^+ + \eta J_{zz}^+ (2-\eta) J_{yy}^+] \\ G_1^{GK} &= 2 [I_{11}^+ - \frac{1}{\sqrt{2\eta}} I_{10}^+] = J_{yy}^+ - J_{zz}^+ - \frac{J_{zx}^+}{\sqrt{\eta}} \\ G_2^{GK} &= \frac{2\sqrt{2}}{3} [-\eta I_{11}^+ + \sqrt{2\eta} I_{10}^+ - I_{1-1}^+] = \\ &\quad \frac{\sqrt{2}}{3} [J_{xx}^+ + J_{yy}^+ (-1-\eta) + \eta J_{zz}^+] \; . \end{split}$$

-2

45 / 72

<ロ> <同> <同> < 回> < 回>

Prescriptions

CCKP

$$\begin{aligned} G_0^{CCKP} &= \frac{1}{3(1+\eta)} [(\frac{3}{2} - \eta)(l_{11}^+ + l_{00}^+) + 5\sqrt{2\eta}l_{10}^+ + (2\eta - \frac{1}{2})l_{1-1}^+] \\ &= \frac{1}{6} [2J_{xx}^+ + J_{yy}^+ + 3J_{zz}^+] \\ G_1^{CCKP} &= \frac{1}{(1+\eta)} [l_{11}^+ + l_{00}^+ - l_{1-1}^+ - \frac{2(1-\eta)}{\sqrt{2\eta}}l_{10}^+] = -\frac{J_{zx}^+}{\sqrt{\eta}} \\ G_2^{CCKP} &= \frac{\sqrt{2}}{3(1+\eta)} [-\eta l_{11}^+ - \eta l_{00}^+ + 2\sqrt{2\eta}l_{10}^+ - (\eta + 2)l_{1-1}^+] = \frac{\sqrt{2}}{3} [J_{xx}^+ - J_{yy}^+] \end{aligned}$$

46 / 72

Brodsky-Hiller - (BH) - I_{11}^+

$$\begin{aligned} G_0^{BH} &= \frac{1}{3(1+2\eta)} [(3-2\eta)I_{00}^+ + 8\sqrt{2\eta}I_{10}^+ + 2(2\eta-1)I_{1-1}^+] \\ &= \frac{1}{3(1+2\eta)} [J_{xx}^+(1+2\eta) + J_{yy}^+(2\eta-1) + J_{zz}^+(3+2\eta)] \\ G_1^{BH} &= \frac{2}{(1+2\eta)} [I_{00}^+ - I_{1-1}^+ + \frac{(2\eta-1)}{\sqrt{2\eta}}I_{10}^+] \\ &= \frac{1}{(1+2\eta)} [\frac{J_{zx}^+}{\sqrt{\eta}}(1+2\eta) - J_{yy}^+ + J_{zz}^+] \\ G_2^{BH} &= \frac{2\sqrt{2}}{3(1+2\eta)} [\sqrt{2\eta}I_{10}^+ - \eta I_{00}^+ - (\eta+1)I_{1-1}^+] \\ &= \frac{\sqrt{2}}{3(1+2\eta)} [J_{xx}^+(1+2\eta) - J_{yy}^+(1+\eta) - \eta J_{zz}^+] \end{aligned}$$

FFS

$$\begin{aligned} G_0^{FFS} &= \frac{1}{3(1+\eta)} [(\frac{3}{2} - \eta)(I_{11}^+ + I_{00}^+) + 5\sqrt{2\eta}I_{10}^+ + (2\eta - \frac{1}{2})I_{1-1}^+] \\ &= \frac{1}{6} [2J_{xx}^+ + J_{yy}^+ + 3J_{zz}^+] \\ G_1^{FFS} &= G_1^{CCKP} \\ G_2^{FFS} &= G_2^{CCKP} \end{aligned}$$

(a) \Rightarrow Valence Component of the Electromagnetic Current (b) \Rightarrow Non-Valence Component of the Electromagnetic Current Ref.: de Melo and Frederico, PRC (1997), de Melo, Naus, Frederico and Sauer, PRC(1999) Elimination / Zero Modes: Vertex $\Gamma(\gamma^{\mu}, \gamma^{\nu})$

$$Tr[gg]_{ji} = Tr[\theta_f^{\alpha}(\not k - \not p' + m)\gamma^+(\not k - \not p + m)\theta_i^{\alpha}(\not k + m)]$$

- +Z (Pair Terms): $Tr[gg]_{ji}^{+Z} = \frac{k^-}{2} R_{gg}$
- where: $R_{gg} = Tr[q_f^{\alpha}(k p' + m)\gamma^+(k p + m)q_i^{\alpha}\gamma^+]$
- Simplification: $[\gamma^{\mu}, \gamma^{\nu}]$ Dirac Trace:

$$Tr[gg]_{xx}^{+Z} = -\eta \ Tr[gg]_{zz}^{+Z}$$

$$Tr[gg]_{zx}^{+Z} = -\sqrt{\eta} \ Tr[gg]_{zz}^{+Z}$$

$$Tr[gg]_{zz}^{+Z} = R_{gg}$$

Also:

$$Tr[gg]_{yy}^{+Z} = 4k^{-}(p^{+}-k^{+})^{2}$$

▲冊 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ○ 臣 ● ∽ Q () ●

Prescriptions

• Pair Terms

$$J_{xx}^{+Z} = \lim_{\delta^{+} \to 0} \int d^{3} \mathcal{K} \frac{Tr[J_{xx}^{+Z}]}{[1][2][4][5][6][7]} \neq 0$$

$$J_{zx}^{+Z} = \lim_{\delta^{+} \to 0} \int d^{3} \mathcal{K} \frac{Tr[J_{zx}^{+Z}]}{[1][2][4][5][6][7]} \neq 0$$

$$J_{zz}^{+Z} = \lim_{\delta^{+} \to 0} \int d^{3} \mathcal{K} \frac{Tr[J_{zz}^{+Z}]}{[1][2][4][5][6][7]} \neq 0$$

$$J_{yy}^{+Z} = \lim_{\delta^{+} \to 0} \int d^{3} \mathcal{K} \frac{Tr[J_{yy}^{+Z}]}{[1][2][4][5][6][7]} = 0$$

• Basis $I_{m'm}^+$:

$$\begin{array}{rcl} I_{11}^{+Z} & = & 0, \ I_{10}^{+Z} = & 0 \\ I_{1-1}^{+Z} & = & 0, \ I_{00}^{+Z} = (1+\eta) J_{zz}^{+} \neq 0 \end{array}$$

- Pair Term Contribution: only: I_{00}^{+Z} !!
- Inna Grach: Elimination I_{00}^+

J. Pacheco B. C. de Melo (^aLaboratório d Mesons Structure in the Nuclear Medium

3

51 / 72

- 4 同 2 4 日 2 4 日 2 4

$$\begin{split} G_{0}^{GK} (+Z) &= \frac{1}{3} \left(J_{xx}^{(+Z)}[gg] + \eta J_{zz}^{+Z}[gg] \right) = \\ &= \frac{1}{3} \left(-\eta J_{zz}^{+Z}[gg] + \eta J_{zz}^{+Z}[gg] \right) = 0 \\ G_{1}^{GK} (+Z) &= \left(-J_{zz}^{+Z}[gg] - \frac{J_{zx}^{+Z}[gg]}{\sqrt{\eta}} \right) = \\ &= -J_{zz}^{+Z}[gg] + \sqrt{\eta} \frac{J_{zz}^{+Z}[gg]}{\sqrt{\eta}} = 0 \\ G_{2}^{GK} (+Z) &= \frac{\sqrt{2}}{3} \left(J_{xx}^{+Z}[gg] + \eta J_{zz}^{+Z}[gg] \right) = \frac{\sqrt{2}}{3} \left(-\eta J_{zz}^{+} + \eta J_{zz}^{+Z} \right) = 0 \end{split}$$

- Vertex (Others):
- Cross term with γ^{μ} and derivatives:

/

$$\gamma^{\mu} \cdot \frac{m_{\rho}}{2} \left[\frac{2k^{\mu} - p^{\mu}}{p^{r} \cdot k_{r} + m_{\rho} m_{q} - i\epsilon} \right]$$

Direct term with derivative couplings:

$$\frac{m_{\rho}}{2} \left[\frac{2k^{\mu} - p^{\mu}}{p^{r} \cdot k_{r} + m_{\rho}m_{q} - \imath \epsilon} \right] \cdot \frac{m_{\rho}}{2} \left[\frac{2k^{\nu} - p^{\nu}}{p^{r} \cdot k_{r} + m_{\rho}m_{q} - \imath \epsilon} \right]$$

Resume/Results: $I_{11}^{+Z} = 0$, $I_{10}^{+Z} = 0$, $I_{1-1}^{+Z} = 0$ and $I_{00}^{+Z} = (1 + \eta)J_{zz}^{+Z}$ with $\lim_{\delta^+ \to 0^+} J_{zz}^{+Z} \neq 0$

53 / 72

Inna Grach Prescription Final Result

No Zero Modes or Pair Terms Contribution with Inna Grach prescp.!!

REf.:

- J.P.B.C. de Melo and T. Frederico, Phys. Lett. B708, (2012) 87
- J.P.B.C. de Melo and T. Frederico, Few Body Syst. 52 (2012) 403
- Similar Results are found by Ji, Bakker and Choi:
- Phy.Rev.D65 (2002) 116001
- Phy.Rev.D70 (2004) 053015

伺 と く ヨ と く ヨ と

Observables

$m_q / m_R [GeV]$	$f_{ ho}$ [GeV]	$< r_{ ho}^2 > [fm^2]$	$\mu_{ ho}$	$Q_d \ [e/m_ ho^2]$
0.430 / 3.0	0.154	0.267	2.20	-0.898
[1]	0.134 / 0.151	0.296	2.10	-0.910
[2]	0.130	0.312	2.11	-0.850
[3]	0.207	0.540	2.01	-0.410
[4]	-	-	$2.11{\pm}0.10$	-
[5]	-	-	$2.1{\pm}0.5$	-
PDG	0.152 ± 0.008			

- Phy.Rev.D65 (2002) 116001, B. Bakker, H. M. Choi and C. R. Ji;
 Phys.Rev. D89 (2014) 033011
- [2] Phy.Rev.C83 (2011) 065206, H. L. Roberts, A. Bashir,
- L.X.G. Guerrero, C. Roberts,
- [3] Phy.Rev.C77 (2008) 025203, M. S. Bhagwat and P. Maris
- [4] ArXiv:1608.3472v1[hep-lat], E.V. Luscheva, O.E. Solojeva and O. V. Teyaev
- [5] Int. J. Mod. Phys. A 18 & 19 (2015) 155014, D.G. Gudino and G. T. Sánchez

J. Pacheco B. C. de Melo (^aLaboratório d Mesons Structure in the Nuclear Medium

æ

<ロ> <問> < 回> < 回> < 回>

æ

æ

Results: Rho Meson in Medium

Table : Observables

Units: Masses in [GeV], radius [fm^2], magnetic momentum [$e/2m_\rho$], quadrupole momentum [fm^2].

$ ho/ ho_0$	m_q^*	$m_ ho^*$	$< r_{ ho}^{*2} >$	$f^*_{ ho}$ [MeV]	μ^*	Q_0^*
0.0	0.430	0.770	0.2667	153.657	2.20	-0.05895
0.10	0.410	0.738	0.2960	185.126	2.20	-0.06387
0.25	0.381	0.692	0.3520	166.147	2.19	-0.07214
0.40	0.350	0.648	0.4243	175.165	2.19	-0.081677
0.50	0.333	0.618	0.5053	177.694	2.18	-0.08840
0.75	0.285	0.552	0.8944	176.796	2.15	-0.09939
0.80	0.278	0.538	1.121	176.326	2.14	-0.10279
0.85	0.268	0.527	1.430	164.277	2.12	-011340
0.90	0.260	0.514	1.859	155.940	2.10	-0.11520
Exp.				152±8		

Ref.: Few-Body Systems (2017), de Melo, J. and Tsushima, K.

-

3

J. Pacheco B. C. de Melo (^aLaboratório d Mesons Structure in the Nuclear Medium

$$F_1(m_
ho^*) = < r^{*2}(m_
ho^*) > = rac{a_0}{m_
ho^* - a_1} = rac{0.0720}{m_
ho^* - 0.474}$$

where: $a_0 = [GeV][fm^2]$ and $a_1 = [GeV]$.

$$F_2(m_q^*) = \langle r^{*2}(m_q^*) \rangle = \frac{b_0}{m_\rho^* - b_1} = \frac{0.049064}{m_q^* - 0.233531}$$

where: $b_0 = [GeV][fm^2]$ and $b_1 = [GeV]$.

J. Pacheco B. C. de Melo (^aLaboratório d Mesons Structure in the Nuclear Medium

$$\mu_{\rho}^{*}(m_{q}^{*}) = a_{0} m_{q}^{*3} + a_{1} m_{q}^{*2} + a_{2} m_{q}^{*2} + a_{3}$$

here, $a_0=54.2853,\ a_1=-61.0225,\ a_2=22.9146$ and $a_3=-0.683494.$

$$\mu_{\rho}^{*}(m_{\rho}^{*}) = b_{0} m_{q}^{*3} + b_{1} m_{q}^{*2} + b_{2} m_{q}^{*} + b_{3}$$

here, $b_0 = 16.1392$, $b_1 = -33.2602$, $b_2 = 22.8736$, $b_3 = -3.05802$

3

 $Q_{0\rho}^*(m_q^*) = a_0 m_q^{*5} + a_1 m_q^{*4} + a_2 m_q^{*3} + a_3 m_q^{*2} + a_4 m_{\rho} + a_5$ here, $a_0 = 4.57347$, $a_1 = 2.90565$, $a_2 = -4.18667$, $a_3 = -5.39273$, $a_4 = 8.98056$, $a_5 = -1.46461$.

 $Q_{0\rho}^{*}(m_{\rho}^{*}) = b_{0} m_{q}^{*5} + b_{1} m_{q}^{*4} + b_{2} m_{q}^{*3} + b_{3} m_{q}^{*2} + b_{4} m_{\rho} + b_{5}$ here, $a_{0} = 0.0115492, a_{1} = -0.256173, a_{2} = -0.14145, a_{3} = 0.510934, a_{4} = -0.000000135009, a_{5} = -0.211799$

- First Guest: M_R^* density dependence and Preliminary Results!
- Brown-Rho scaling

$$M_R^*(\rho/
ho_0) = M_R\left(rac{m_q^*}{m_q}
ight)$$

3

2

<ロ> <同> <同> < 回> < 回>

・ 同 ト ・ ヨ ト ・ ヨ ト

68 / 72

3

A (1) > (1) > (1)

69 / 72

3

Zero of Charge Form Factor: $G_0(q_{zero}^2) = 0$

- Ref. Few-Body Systems (2017), de Melo, J. and Tsushima, K.
- de Melo and Tsushima, K., arXiv:1802.06096 [hep-ph]

70 / 72

- Light-Front $\implies \begin{cases} Bound States \\ Covariance \end{cases}$
- Rotational Invariance Broken $\implies k^-$ Problematic
- Electromagnetic Current:
- $\left\{ \begin{array}{l} \text{ Present Work : } J^+ \text{ Component} \\ \text{ Future Works : } J^- \text{ and } J_\perp \end{array} \right.$
- Pair Terms Contribution: $\implies J^+$, J^- and J_\perp
- Take New Informations about Bound States
- \Rightarrow kaon + another pseudo-scalar particles
- \implies Vector particles
- $\implies \bullet$ Nucleon
- \Rightarrow Pion: Space-like and Time-like
- \implies Mesons decay's
- \Rightarrow Bound States / Bethe-Salpeter Amplitudes Nakanishi Integral Representation

Thanks to the Organizers Workshop on Pion and Kaon Structure at an Electron - Ion Collider - PIEIC 2018

Support LFTC and Brazilian Agencies • FAPESP , CNPq and CAPES Thanks (Obrigado)!!

25 de May, 2018 72 / 72