News on PbWO₄ Crystals

R. W. Novotny

II.Physics Institute, University Giessen, Germany and for the PANDA collaboration

- The PANDA requirements
- Some comments on radiation hardness
- Available manufacturer
 - SICCAS
 - CRYTUR
- Status

June 16, 2015

the PANDA detector at FAIR

 4π detector for spectroscopy and reaction dynamics with antiprotons

the Target Spectrometer: based on high-quality PWO-II

physical goals of PANDA require further development

	PWO-I (CMS)	PWO-II (PANDA)
luminescence maxi- mum, nm	420	420
La, Y concentration level, ppm	100	40
expected energy range of EMC	150MeV - 1TeV	10MeV - 10GeV
light yield, phe/MeV at room temperature	8-12	17-22
EMC operating tem- perature, °C	+18	-25
energy resolution of EMC at 1GeV, %	3,4	2,0

Similarity and difference of the colour centres created under Y-quanta and protons

Point defects due to crystal growth

Stars created by fission products

Set of isotopes identified in PWO crystal : measured activity 4 months after irradiation and the extrapolated values at 24 h and 7 months after the end of irradiation.

L.T.Chadding, 1965

Point defects and their clusters which are created by knocked ions

M.Huhtienen 2001

Change of the transmission under hadron irradiation

Change of the longitudinal transmission of 22 cm long PWO crystals after irradiation with Υ-quanta (60Co, 1000Gy) and 24GeV protons with fluence 3,6 · 10¹³ p/cm².

PWO: Short term intense irradiation by γ-quanta ⁶⁰Co (1.2MeV, 1 MGy)

Radiation induced absorption spectrum and its approximation with set of Gaussians

PWO: intense irradiation with 24GeV protons (3.6x10¹³(p/cm²)

Radiation induced absorption spectrum and its approximation with set of Gaussians

consequences of cooling

fast decay kinetics even at T=-25°C:
constant temperature gradient:

LY(100ns)/LY(1µs) > 0.9 LY(-25°C)/LY(+18°C) ~ 3.9

•,,no" statistical recovery of radiation damage at T=-25°C asymptotic light loss correlated with Δk (@RT)

radiation hardness: limitations at T=-25°C

Optical transmission: stimulated recovery in PWO

WO₃ + O is an oxygen vacancy and oxygen ion in a close intersite position (FTD)

Electronic transitions in PWO containing FTD and dedicated absorption bands

stimulated recovery of radiation damage

V. Dormenev et al., NIM A623 (2010) 1082 - patented

• implications for EMC operation

overall quality of the available BTCP crystals

remaining PWO manufacturer

SICCAS – Shanghai, China

- **R&D** continued in parallel
- Bridgeman technology (not comparable to BTCP)
- fully acceptable crystals delivered in the past
- presently search for appropriate raw material and optimization of technology

CRYTUR – Turnov, Czech Republic

- R&D phase just started (June 2014)
- Czochralsky technology (identical to BTCP)
- know-how and raw material still available

how to produce crystals

Czochralsky-method

Bridgeman-technology

former production @ SICCAS

• recent delivery from SICCAS (2014 - 2015)

SICCAS ID	T(360	T(420	T(620	LY(T=+18 C, t=100	LY(100	dk(420 nm)
	%	%	%	phe/MeV	at T=18C, %	m ⁻¹
limits	≥3 5	≥ 60	≥ 70	≥16	> 90	< 1.1
1451	19,0	58,8	73,8	22,3	94,1	1,92
1452	25,2	62,9	74,2	22,3	94,1	0,72
1453	23,2	57,8	75,3	11,1	90,4	3,94
1454	35,0	67,2	77,8	26,9	93,7	0,69
1455 rus	10,1	52,5	73,5	15,4	93,9	2,68
1456	2.0	56.5	73.8	15.6	90.6	636
1457	16.4	<u> </u>	<i>(</i>),0	13.1 at -25 C	90,0 87.8	6 3 2
1458	20.4	58 8	75.2	15,1 at -2.5 C	01.3	2.03
1450	11 3	52.6	<u>68 5</u>	19.2	92.1	2,73
1460	19.1	45 7	63.6	1), <u>2</u> ?	<u> </u>	5.89
1461	8.8	52.0	65.6	19.7		3,59
1462	32.5	60.7	74.3	21.9	91.5	0.85
1463	22.9	55.1	67.3	21,5	91,9	0.38
1464	22.7	59.0	74.1	20.5	91.6	0.89
1465 rus	1,8	40,3	66,5	12,9	90,8	2,26
1466	31,2	56,9	72,0	23,4	90,1	0,86
1467	20,6	55,8	71,1	21,4	90,4	0,71
1468	21,5	56,5	69,7	19,9	89,9	0,65
1469	26,9	56,9	69,0	21,2	90,7	0,44
1470	25,5	56,2	70,3	22,8	90,0	1,33
1471	24,7	57,8	70,8	20,6	90,5	0,80
1472	33,6	59,1	72,1	20,7	90,1	0,16
1473	22,2	60,3	72,2	20,8	90,7	0,71
1474	23,2	60,5	72,2	20,3	89,9	0,59
1475	35,0	65,2	78,0	22,0	91,4	0,84

• recent delivery from SICCAS (1)

• recent delivery from SICCAS (1)

• recent delivery from SICCAS (1)

• recent delivery from SICCAS May 2015

SICCAS ID	T(360	T(420	T(620	LY(T=+18 C, t=100	LY(100	dk(420 nm)
	%	%	%	phe/MeV	at T=18C, %	m ⁻¹
limits	≥35	≥60	≥ 70	≥16	> 90	< 1.1
1466	31,2	56,9	72,0	23,4	90,1	0,86
1467	20,6	55,8	71,1	21,4	90,4	0,71
1468	21,5	56,5	69,7	19,9	89,9	0,65
1469	26,9	56,9	69,0	21,2	90,7	0,44
1470	25,5	56,2	70,3	22,8	90,0	1,33
1471	24,7	57,8	70,8	20,6	90,5	0,80
1472	33,6	59,1	72,1	20,7	90,1	0,16
1473	22,2	60,3	72,2	20,8	90,7	0,71
1474	23,2	60,5	72,2	20,3	89,9	0,59
1475	35,0	65,2	78,0	22,0	91,4	0,84

recent delivery from SICCAS May 2015

additional new PWO manufacturer

CRYTUR – Turnov, Czech Republic

- R&D phase just started (June 2014)
- Czochralsky technology (identical to BTCP)
- know-how and raw material still available

start results @ CRYTUR (1) supported by: RINP Minsk: M. Korjik first experiences under different conditions: small test samples NEOCHEMICOScow:

• first and second full size ingot (~ 23cm long)

• start results @ CRYTUR (2)

test crystal: 20 x 20 x 200 mm³

 longitudinal inhomogeneity scattering centers
 sufficient light yield
 radiation hard

Longitudinal induced absorption coefficient of CRYTUR PWO

test crystal: 20 x 20 x 200 mm³

Radiation induced coefficient vs position, Lateral Side 2

test crystal: 20 x 20 x 100 mm³

test crystal: 20 x 20 x 100 mm³

Transversal radiation induced coefficient of

50 +

Position, cm

Transmittance, %

test crystal: 20 x 20 x 100 mm³

Status @ CRYTUR

• status July 15:

installation of 4 ovens polishing and cutting

- order of R&D crystals Giessen Uppsala
- next meeting @Turnov:middle of July
- production start in August

• the quality requirements

Property	Unit	Limit
longitudinal transmission at 360 nm longitudinal transmission at 420 nm longitudinal transmission at 620 nm non-uniformity of transversal transmission at $T = 50\%$	% % % nm	≥ 35 ≥ 60 ≥ 70 ≤ 3
LY at T= $18 \degree C$ LY($100 ns$)/LY($1 \mu s$)	$\mathrm{phe}/\mathrm{MeV}$	$ \ge 16.0 \\ \ge 0.9 $
induced absorption coefficient Δk at room temperature, integral dose 30 Gy mean value of Δk distribution for each lot of delivery	m^{-1} m^{-1}	≤ 1.1 ≤ 0.75

some general remarks on PWO

index of refraction

increased light yield due to doping

• production at BTCP

quality control and performance

• the optical transmission

radiation hardness

Typical induced absorption spectra of PWO undoped and uncompensated crystal grown in early days

optical longitudinal transmission

property	condition	specification
longitudinal	at 360nm	\geq 35%
transmission	at 420nm	$\geq 60\%$
	at 620nm	$\geq 70\%$
uniformity of transv. transmission	wavelength at $T = 50\%$	$\Delta\lambda\leq 3$ nm

light yield @ 18°C

radiation hardness

tested using γ-rays: ~ 1.2 MeV ⁶⁰Co integral dose: 30Gy

 $\Delta k = \ln \left(\frac{T_{bef}}{T_{after}} \right) \cdot \frac{1}{d}$

acceptance limit: $\Delta k < 1.1 \text{ m}^{-1}$

light yield measurement

temperature dependence of luminescence

observation of severe radiation damage due to hadrons

similar observation for 150MeV protons

 strong radiation damage due to protons at high fluence severe damage due to highly ionizing secondaries clusters of color centers due to ion displacements
 damage due to γ-rays: stimulated recovery proton damage: annealing by heating

prototype performance

optimized light output: PWO-II
cooling: operation at T=-25°C

extension to energies < 50MeV @ MaxLab

Relative resolution after deconvolution

prototype performance PROTO 60

prototype performance PROTO 60

readout via SADC:

further improvement

prototype performance PROTO 60 15 GeV positrons

• alternatives ?

