
PCB boards assembly

5 boards fully cabled and tested (as of 9/22)

PCB cabling

Shipping preparations

Box ouverte. Équipement calé, vissé et sanglé dans la box.

Colis A – Box – 500 kg – Boite en contreplaqué environ 200x110x165 cm à réaliser. Contenu 500 kg.

Box équipée fermée telle qu'elle sera envoyée. Le châssis sous la box ne fait pas partie de l'envoi. Dimensions de la box avec les plaques noires : 174x89x135 cm Dimensions hors tout avec vis, anneaux et poignées : 180x90x144 cm - 500 kg

Colis B – Accessoires - Boite en contreplaqué 100x100x100 cm à réaliser. Contenu 108 kg.

Outillage tests. 54x47x26 cm - 10 kg

Scintillateurs. 85x60x30 cm - 22 kg

20 PMT. 20x20x20 cm - 1 kg

35x35x13 cm - 15 kg

2 boites

Tedlar.

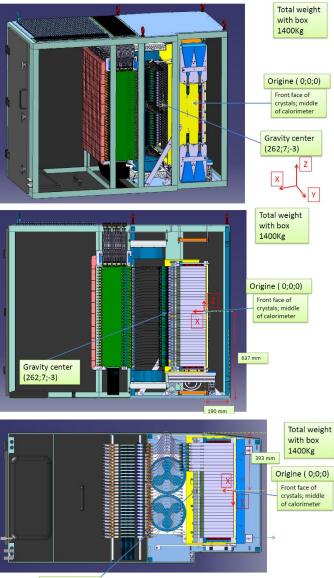
18x12x8 cm 2 kg

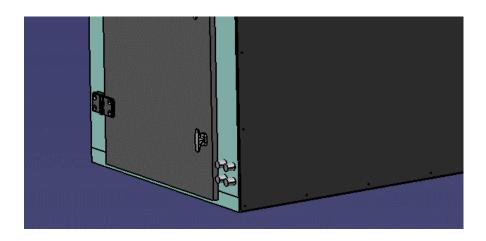
Fibres optiques. 85x60x30 cm - 3 kg

Câbles HT. 49x35x18 cm - 17 kg 2 boites

Accessoires divers. 85x35x35 cm - 20 kg

Plaques Mu-métal. 93x13x13 cm - 18 kg 2 boites


Carton : 80x45x67 cm - 44 kg Palette : 85x56x13 cm Hors tout : 85x56x80 cm - 52 kg


Carton : 95x52x77 cm - 55 kg Palette : 100x56x13 cm Hors tout : 100x56x90 cm - 64 kg

Minor points

Center of gravity (+ latest STEP) sent to Paulo

Gravity center (262;7;-3) Position of cooling water I/O? (interferences)

Position chillers? (proximity vs radiation damage)

NPS simulation code & documentation

https://wiki.jlab.org/cuawiki/index.php/Documents#NPS Geant4 simulation for Hall C DVCS

NPS Geant4 simulation for Hall C DVCS

GitHub d: use DVCS_evt_gen/.

A very short User Guide D.

Neutral Particle Spectrometer Geant4 Simulation Guide for Hall C DVCS

Ho San KO¹*, ¹Laboratoire de Physique des 2 infinis Irène Joliot-Curie

September 27, 2020

This document is a short guide on how to run a Neutral Particle Spectrometer (NPS) Geant4 simulation with a DVCS event generator and a photon reconstruction software. There are also short descriptions of the necessary classes. Currently, the kinematic setting exists only for the proposed Hall C DVCS. For any questions or comments, please send an email to hosanko@jlab.org.

Contents

1

2

Running a simulation		3
1.1	Environment setting in JLab/ifarm and getting the code	3
1.2	Configuration and compiling	3
1.3	Running a simulation	3
Simulation structure 7		7
2.1	DVCS.cc	7
2.2	DetectorConstruction	7
2.3	PhysicsList	8
2.4	HistoManager	9
2.5	PrimaryGeneratorAction	9
2.6	RunAction	9
2.7	EventAction	9
2.8	B5HadCalorimeterSD and B5HadCalorimeterHit, i.e. Sensitive Detector	10