Meeting 19 December 2017

From Cuawiki
Revision as of 13:52, 20 December 2017 by Hornt (talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

PRESENTATIONS

CPS Radiation Study using FLUKA (Jixie)

[ CPS Radiation Study (Parker)]

CPS Studies Update (Bogdan)

Rotating Target Raster (Dustin)


NOTES

Homework for next year: make a list of what needs to be done for removing conditional approval (Thia/Tanja?) and circulate for discussion


Discussion of Jixie's update on CPS radiation studies using FLUKA

  • Two configurations were investigated: 1) pure electron beam, 2) pure photon beam created with 2.7uA electron beam incident on 10% radiator and a) with UVa target and NO CPS and b) with NPS and NO target
  • the target in the simulation now has real thickness of the chamber and the real geometry of the coils (based on Hall B design)
  • Total accumulated heat load is ~0.3 W for both cases - a little larger for pure photon case
  • Activation at the target chamber boundary 1 hour after beam off after 1000 hours of beam is for: (1) < 1mrem/hr and (2) ~4 mrem/hr - both are acceptable
  • Analysis of neutron flux at various boundaries shows that 10cm thick 30% borated plastic reduces the neutron flux significantly
  • Heat power in CPS (Cu core) is 584 W/cm^3 - important for cooling design considerations
  • Accumulated damage (1 MeV neutron equivalent damage) is less than 10^13 (dose where electronics get damaged) at: i) 20cm away from the beam line in the pivot area, ii) outside at dipole - all looks good
  • Activation profile after 1000 hours of beam comparison:
  • Pure electron beam with target: all safe
  • Pure photon beam with target and no CPS: high background radiation, need more shielding backward from CPS
  • Pure photon beam with CPS and no target:contribution from CPS in target area is small and comparable to that from electron beam (1) scenario
  • CONCLUSION: CPS doesn't create much activation in target area - what comes out is from the target itself
  • Prompt dose rate comparison for pure photon beam with 1) Target and no CPS and 2) CPS and no target shows that CPS contributes very little in target area
  • Overall Conclusions and next steps:
  • Shielding design looks good overall - radiation contribution from CPS is at most the same as from the target
  • Next: put target in with CPS and repeat all studies
  • Longer term: investigate backward region shielding
  • How much is needed? - depends to some extent on experiments.
  • NPS requirements - related to crystal radiation hardness. Requirement specifies that ideally want to run experiment without annealing (~1000 hrs). Could check that with simulation creating conditions for DVCS (no target/radiator)


Discussion about Parker's model

  • Easy to use interface
  • Good way to cross check and to run quick tests for Hall D


Discussion about CPS update (Bogdan)

  • Top of CPS seems most important for soft neutron shielding - might impact design
  • Discussion about additional physics with a CPS and different target configurations


Discussion about rotating target raster (Dustin)

  • A few comments/suggestions are made to optimize slides for NPS/CPS meeting in January:
  • NMR - explain how to practically do that
  • more on rotate vs. non-rotate field scenarios, include a slide with target and rotation to remind people what trying to do
  • Add field gradient profile - this question came up earlier
  • Radiation considerations - this is good
  • Connection to additional physics - this is good


NEXT MEETING: tentative 9 January 2018, as needed.