Simulation Tasks - collection

From Cuawiki
Revision as of 10:45, 17 May 2021 by Hornt (talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.
  • Implement EEEMCal (contact: Carlos)
  • Implement barrel homogeneous EMCal (contact: Nathaly)
  • Compare different reconstruction algorithms
  • Investigate discrimination between single photon and merged photons from pi0 decay based on cluster tower energy distribution; same for e/pi separation - possibly explore machine learning application (contact: Renee)
  • Hybrid calorimeter clustering
  • see JLab HyCal
  • Light transport going beyond summing up GEANT4 hits
  • Determine impact of calorimeter support structure on physics performance; define module geometry (contact: Vardan, Arthur)
  • study/conclude on the tolerance for the size of the gaps between modules (defined by the alveolar and other support elements); also for the transition region between two calorimeters.
  • Angular (rapidity) dependencies: for non-projective geometry for modules with the same length, the EMCal depth seen by the particle will depend on rapidity (with 45 degrees to the beam line it will be a factor of sqrt(2) larger compared to 0 degree). We know that e/h separation will be affected (shower profile), but simple E/p matching performance for eID may be affected too (deeper EMCal - more probability for charged hadron to shower); also the affect of gaps will be different with the angle.
  • Comparison of simulation with test beam data (electrons, pions, etc) and find the ways for simulation tuning (e.g. light transport model and/or non-uniformity map, etc.) - contacts: Petr,
  • Detector Design Optimization (contact: Cristiano)
  • ...