
FPGA

UDP socket reader

ET system
GC

Users

Get array of empty
ET buffers

Put array of full ET
buffers (one tick)

Data Consumer

Get array of full
buffers (one tick)

Put array of
used buffers

The Event Transport or ET system, based on
shared memory, can be used as a data
storage FIFO, decoupling the reading thread
from data users.

Since we’re reading UDP packets, only 1
reading thread can be used. In this scheme,
it does not have to allocate memory but
can use pre-allocated ET system buffers.
These buffers are reused.

When initially configured, the ET system
needs to know how many data sources max
will be used.

If there are no (or slow) consumers, the
reader may be unable to obtain more
buffers and will dump the incoming data.

ET code can be C, C++ or Java.

FPGA
UDP

socket
reader

ET

GC

Users

ET System as FIFO
et_start_fifo –n N –e 4

Data Consumer:
getFifoEntry, putFifoEntry

Data
Source 1

Data
Source 2

Data
Source N

.

.

.

FIFO Entry =
1 - N buffers =

1 tick

1 2 … N
1 2 … N

1 2 … N
1 2 … N

Station Input Lists

Little Box =
1 buffer

Can be blocking or
non-blocking

There is one reading thread which disentangles incoming packets. It can handle:
ü data from multiple sources
ü out-of-order packets
ü overlapping ticks

The reading thread gets a single fifo entry – which is an array of buffers. These buffers exist in shared memory. This fifo
entry corresponds to 1 tick.

Thread places reconstructed data from one data source into a single buffer. If there are multiple sources, each source
will have its own buffer in a single fifo entry.

When the data from each source is reconstructed, then the entire fifo entry is returned to the ET system and made
available for back-end users, through the “Users” station.

The fifo is by default non-blocking. So if the data users are slow, all incoming packets are read, placed into buffers, then
dumped.

Data users can get metadata from each buffer. Among other things, the metadata tells the user if a buffer has data and
what the data source id is.

In the previous diagram, “GC” just stands for GrandCentral station and contains a list of available fifo entries/buffers for
placing new data in. The “Users” station contains a list of available fifo entries/buffers with valid data.

Switch

Load Balancer

FPGA
Data Plane

Host
Control Plane

Src 1

Src 2

Host 1
Event 1 Src 1

Event 1 Src 2

Reassembly

Event Building

Analysis

port 1

port 2

Colors à Events
Shapes à Data Sources

Host registers &
sends metrics

Source sends
latest event #

Control Plane
• Set schedule density (proportion of slots allocated to host)
• From host feedback, create new schedule density
• From source feedback, set epoch boundary for change to

new schedule
• Update behavior of data plane

EJFAT System Architecture

Switch

Load Balancer

FPGA
Data Plane 2

Host
Control Plane

Src 1

Src 2

Host 1
Event 1 Src 1

Event 1 Src 2

Reassembly

Event Building

Analysis

port 1

port 2

Colors à Events
Shapes à Data Sources

Host registers &
sends metrics

Source sends
latest event #

Control Plane
• Select data plane
• Set schedule density (proportion of slots allocated to host)
• From host feedback, create new schedule density
• From source feedback, set epoch boundary for change to

new schedule
• Update behavior of data plane

EJFAT System Architecture

FPGA
Data Plane 1

Load Balancer

Control Plane

Src

Backend

Reassembly

1) ReserveLB (adminToken, LBname,
timeout)

2) LBstatus (adminToken, LB_id)

3) FreeLB (adminToken, LB_id)

4) Register (adminToken, LB_Id, name,
weight, ipAddr, udpPort, portRange)

5) SendState (sessionToken, sessionID,
LB_Id, timestamp, fillPercent, controlSignal,
isReady)

6) Deregister (sessionToken, LB_id,
sessionID)

Last event #N

EJFAT CP Communications

Data Plane
Data

1) (instanceToken, lLB_id , syncIpAddr,
syncUdpPort, dataIpv4Addr , dataIpv6Addr)

2) (timestamp, currentEpoch,
currentPredictedEventNumber,

for each worker:
(name, fillPercent, controlSignal,
slotsAssigned, lastUpdated))

4) (sessionToken, sessionId)

Returned Values GRPC Commands to CP

Switch

Host

port 1

Load Balancer EJFAT Event Reassembly

UDP packet Reassembly
into events / Src 1

UDP packet Reassembly
into events / Src 2

Linux IP Stack
XDP Socket / Stack Bypass

Kernel

NIC
Driver

port 2

User Space

Combine event fragments

Analyze events

Colors à Events
Shapes à Data Sources

Src 1

Packetize

Src 2

Packetize

