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Introduction



Polarized sources and targets are complex, dynamical systems.

Experiments at Jefferson Lab rely on human operators to control and
optimize the performance of these systems.

Can Al/ML control exceed the performance of human operators?

Potential benefits both in terms of improved statistics and cost
savings.



Al-Optimized Polarization (AIOP)

AIOP is a 2-year, DOE-funded project that began in March 2024.

An initiative of the Experimental Physics Software and Computing
Infrastructure (ESPCI) group at Jefferson Lab.

Consists of two sub-projects:

1. Polarized Photon Beam:;
2. Polarized Cryogenic Target.



Polarized Beam at GlueX




The GlueX Experiment at Hall D

GlueX uses a polarized photon beam to search for and measure
exotic hybrid mesons predicted from lattice QCD.
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GlueX Photon Beam

The interaction of the CEBAF electron beam with a thin (~ 50um)
diamond radiator produces a polarized photon beam via coherent
bremsstrahlung radiation.

The position of the primary peak (E,) is determined by the
orientation of the diamond and the position of the beam on the
crystal.
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GlueX Goniometer

The diamond is mounted on a goniometer which
can be rotated with respect to the x, y, and z axes «
the lab frame (called pitch, yaw, and roll angles,
respectively).

The roll angle determines the polarization plane
and is held constant.

The pitch and yaw angles determine the location c
the coherent bremsstrahlung peak and, if
necessary, are adjusted at the start of a run.




Goniometer Control GUI
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The Hall D polarized photon source control GUI.




Goniometer Control GUI
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The Hall D polarized photon source control GUI.



Goniometer Control GUI
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Gaussian Process Regression

Can we train a surrogate model on existing GlueX data to learn the complex dynamics
affecting the polarization?

Gaussian Process Regression is a flexible, non-parametric approach to regression,
which allows for uncertainty quantification in predictions.
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Polarized Target




Dynamic Nuclear Polarization at Jefferson Lab

DNP has been used in Halls A-C at Jefferson Lab.

Most commonly-used materials are irradiated solid ammonia (NHs)
and deuterated ammonia (NDs).

Polarized target operation requires constant monitoring and
adjustment throughout data-taking.



Shift workers manually adjust the microwave frequency

NG it fibe wslected ot random RGC dats fike welected o random
s -
. ap ot rrh o g2t
- i o W*ﬂﬁ{j@ﬂ@%ﬁﬂ "
L) H o
£ iR
| HE
i Wi
1 7
H " oar 3 i
s i !
Y oem i b i | i
%\5&, % ";'.
FhERL i
u e o .- '
AT
e,
T Ly
- 181 08 i
Y S T S TS
e Dot s A i~

Example increase in polarization (left) after operator decreased microwave
frequency (right). The data was taken from an experiment during Run Group
Cin Hall B.



The optimal frequency is not straightforward to predict
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Measurin Polarization

The target polarization is measured using continuous-wave NMR.
Requires performing background subtraction.
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NMR signal extraction process for a polarized proton target. From left to
right: background subtraction, residual subtraction, signal integration.



Measuring the Polarization

Extracting the polarization is even more difficult for deuteron which
has a characteristic double NMR peak.
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Gaussian Process Regression

Input Variables Used

Means and std. dev. of
NMR curves
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Gaussian Process Regression
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Reinforcement Learning

Reinforcement Learning is a machine learning paradigm where an
agent learns to make decisions by taking actions in an environment
to maximize cumulative rewards.

Can we use our surrogate models to define an environment for an RL
agent to learn an optimal policy?
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Work currently in progress.
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Conclusion




AIOP seeks to optimize nuclear using Al/ML for experimental control.

Preliminary results shown using ML to learn a surrogate model for a
polarized photon beam and polarized target.

Plan to integrate with the JLab experimental hall controls system in
2025-26.

Results could help lay the foundation for future autonomous
experiments at other facilities (e.g. EIC).
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Questions?
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Effect of Diamond Thickness
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Figure 1: The collimation acceptance
vs. bremsstrahlung angle for three
different diamond radiator
thicknesses.

Figure 2: The coherent enhancement
spectrum after collimation for three
diamond radiator thicknesses.



Crystal Coordinate System
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Figure 3: Angles in the diamond

with k,g constant.
reference frame. Reproduced from K.

Livingston (2009) in NIM A.

- Adjusting the angle c adjusts the coherent edge position E..

- ¢ determines the orientation of the polarization. ¢ = 0° or 90°
for PARA/PERP orientation of polarization.
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