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A Background/Introduction

This project seeks to develop AI/ML based control applications for optimizing polarized targets and
beams for use in all 4 experimental halls throughout Jefferson Lab (JLab). The focus will be on two
applications: cryogenic polarized targets and the linearly polarized photon source. Dynamically
polarized proton and deuteron targets [1] are crucial tools for the study of nuclear spin structure at
JLab (see [2], [3], [4]) and other facilities [5]. Throughout its 6 GeV era, these systems were used
in each of the lab’s three experimental halls to enable nine experimental programs, and the first of
six programs at 12 GeV is currently underway in Hall B. The linearly polarized photon beam is an
essential component to carry out theGlueX physics program, namely beam asymmetry studies and
searches for long-sought exotic hybrid mesons via partial wave analysis that would confirm the role
of gluonic excitations in a mass region that is largely unexplored and favorable for their observation.
In addition to GlueX, there is a rich experimental program in Hall-D that relies on this polarized
photon source including the Charged Pion Polarizability (CPP) [6] and Short Range Correlations
[7] experiments, and the future K-Long Facility[8]. Currently, both of these applications require
constant attention from shift takers and experts. Implementing uncertainty aware, robust AI/ML
based automation and control systems can improve the stability of the polarization, effectively
increase statistics at no cost, and reduce inconsistencies inherent in human control.

This work will lay additional foundational stones that can eventually be used to build a fully
self-driven experiment. A future goal for NP and HEP experiments is the ability to control multiple
detector and beam systems in order to optimize on a set of physics goals. This will need to be
a layered approach in which individual systems already under autonomous AI/ML control can be
coupled by a larger AI/ML system that optimizes on global goals. For example, this work, which
focuses on aspects of targets and beam controlled by the experimental halls, could be coupled with
AI/ML controlled detector systems such as the one that the successful AI for Experimental Controls
(AIEC) project started at JLab under LAB-20-2261[9]. While coupling independent systems is
beyond the scope of this proposal, this work will add to the number of AI/ML controlled systems
that could be brought together under a global AI/ML as part of a future FOA.

A detailed description of the two polarization control applications is provided in the following
sections.

A.a Polarized Target

Cryogenic polarized targets are the most complex target systems utilized at JLab, and their per-
formance is sensitive to numerous factors including temperature, the instantaneous and integrated
beam currents, and fluctuations in both the microwave apparatus that drive the polarization and
the NMR electronics that measure it. The most commonly used materials for dynamic polarization
are irradiated solid ammonia (NH3) and deuterated ammonia (ND3). To prepare these materials
for experiments, the gases are frozen, crushed into millimeter-sized granules, and then irradiated
with a low-energy electron beam to create paramagnetic radicals within the solid lattice. After
irradiation, they can be stored in liquid nitrogen until needed. During the scattering experiments,
the radicals’ electron spins are polarized to nearly 100% at ultra low temperatures and high mag-
netic fields. This high polarization is then transferred to nuclear spins using microwave-induced
transitions that simultaneously flip both electronic and nuclear spins. Depending on the microwave
frequency, either positive or negative nuclear polarization can be produced. In a well optimized sys-
tem, proton (deuteron) polarizations exceeding 90% (40%) can be achieved under the “standard”
JLab conditions of 1 K and 5 T.

Unfortunately, the average polarization that can be maintained during the electron-scattering
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experiment is lower because the beam creates additional radicals in the lattice that are deleterious to
the polarization process. To reduce the rate at which polarization is lost, the microwave frequency
must be adjusted as the integrated beam charge (dose) on the sample accumulates. Figure 1 at
left shows the polarization achieved in Hall B over the charge accumulated lifetime of one target
sample’s lifetime. This shows large, regular spikes in the polarization as the material is annealed
to 80-100 K to partially remove the unwanted radicals and recover polarization. It also displays
several smaller jumps that are due to beam trips and microwave adjustments. Traditionally, these
adjustments have been performed by shift workers periodically during the experiment as they feel
it is warranted. Figure 1 at right shows the manually selected microwave frequencies as a function
of dose since the last anneal event for all target samples used in a Hall C experiment. This plot
illustrates that the optimal frequency and its behavior with beam is not straightforward to predict.
It can vary from one sample to the next and usually shifts after a given sample is annealed. As
a result, the experience of the shift workers plays a large role in determining the average target
polarization that can be maintained over the course of the experiment. Machine Learning and
Artificial Intelligence methods can be utilized to reduce this effect. Moreover, because the target
polarization enters the experiment Figure-of-Merit (FOM) as a square, even modest improvements
in the average polarization can noticeably improve the statistical precision of a given experiment,
or reduce the time required for the experiment to reach its desired precision.

Figure 1: Left: Target polarization versus beam dose over the lifetime of one target material
sample in Jefferson Lab’s Hall B. Right: Chosen microwave frequency versus beam dose since
the last anneal in Hall C, showing the trend of the frequency for negative polarization (blue, near
140.1GHz) and positive polarization (green, near 140.5 GHz).

In addition to improving the average polarization of the target during the experiment, AI/ML
techniques may improve the accuracy to which this polarization is measured using standard continuous-
wave NMR techniques. Figure 2 illustrates the process of extracting the target polarization from
the NMR signal. The raw signal (“a” in the figure) is a plot of the output voltage as the circuit
is swept through the nuclear resonance frequency. The background under the resonance signal is
inherent in the circuit and is too complex to fit with great accuracy. Instead, the background is
measured by adjusting the magnetic field so the target sample is no longer on resonance and sub-
tracted from subsequent on-resonance sweeps. Next, a polynomial fit is performed to compensate
for any drifts in the background due to small temperature changes both inside and outside the
target cryostat (“b”).

Even small changes in temperature, both inside and outside the target cryostat, produce drifts in
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Figure 2: NMR signal background extraction process for a proton signal, showing background
subtraction, polynomial residual subtraction and final integration [10].

the circuit response, so it has been important to remeasure the electronic background periodically.
First, a previously measured background signal is subtracted (“a” in the figure), then a polynomial
fit is done to attempt to remove any drift of the current background (“b” in the figure). Finally,
the area under the subtracted curves is taken to determine the total circuit response from the
polarization (“c”). In the case of deuteron targets, this becomes even more complicated due to
the double peak structure. Figure 3 shows an example of this from real data. The polynomial fit
fails to completely remove the background drift, resulting in significant residual background and
an inaccurate polarization extraction.

Figure 3: A deuteron polarization signal, showing a characteristic double NMR peak, after the
extraction process. This illustrates the failure of the polynomial fit to completely remove the
background drift for a small NMR signal, causing inaccuracy in the measurement.

Figure 4 shows the microwave frequency(left) and corresponding polarization(right) for an ex-
ample 500 minute time period during the CLAS12 Run Group C run period in 2022. A change in
the microwave frequency and the corresponding change in polarization can be seen at around the
75th minute. The red line near the top of the polarization plot indicates the average polarization
of the top 15% of points in the graph. Taking the ratio of the area under the red curve to the area
under the blue curve gives a rough estimate of the improved polarization for this period of time.
The statistical equivalent of beam time goes like the polarization squared leading to an additional
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Figure 4: Data from a single 500 minute data file from CLAS12 RGC. Left: microwave frequency
showing a change at around 75 min. when it was adjusted. Right: Measured polarization for the
same time period. The red line indicates the average polarization of the top 15% of measurements.
The ratio of the integral under red line to that of the blue can be used to estimate a benefit of
automating control of the polarization (see text).

1% in this region. Scaling this up to a 36 week year of running, controlling the polarization would
gain the equivalent of 2.5 days of beam time per year. This is summarized in Table 1. Given the
operating cost of the accelerator (estimated at ∼ $10k/hr-$15k/hr) this is significant.

Estimated Benefit Polarized Target

FOM 0.99

gained statistics 1%

equivalent beam time gained 2.5 days/year

Table 1: Estimated benefit per year of successful implementation of proposed work. (Polarized
cryo-target part only).

While the Jefferson Lab Target Group has decades of experience designing, building, and oper-
ating these systems, in this proposal we identify two key areas where new AI/ML techniques can
be utilized to increase both the average polarization of the target sample and the accuracy to which
the polarization is known.

A.b Polarized Photon Source

In the case of the GlueX experiment, a linearly polarized photon beam is incident on a proton tar-
get to search for and measure exotic hybrid mesons [11]. The photon beam is produced via coherent
bremsstrahlung radiation from an electron passing through a thin diamond wafer (radiator). The
diamond radiators are mounted on a goniometer which can change the orientation of the diamonds
via three axes of rotation. This enables photoproduction experiments with different orientations
of linear polarization direction. GlueX uses four orientations of the polarization vector to have a
better handle on the systematic uncertainties, namely at 0, 45, 90, and 135 degrees with respect
to the y-axis in the lab frame. The linearly polarized photons have an energy distribution that
includes a primary and smaller, secondary and tertiary enhancements that can be adjusted via the
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angles of the diamond. The polarization is strongly correlated with the photons in the enhanced
energy region. Figure 5 shows the polarized photon source control GUI, where the enhancements
are shown in the top plot. The vertical line identifies the ”coherent edge” as determined by a fit to
the photon energy spectrum. The position of the coherent peak edge is dependent on the electron
beam position, which fluctuates during the course of an experiment. Ensuring the stability of the
primary coherent peak edge is important to control possible systematic effects during data taking.

Figure 5: The Hall-D polarized photon source control GUI. The top plot shows the enhancements
in the photon energy spectrum with the vertical line identifying the edge of the primary coherent
peak. The polarization is strongly correlated with the enhancement.

In Figure 6, the coherent edge position (yellow), beam current (blue), and beam positions as
measured by beam position monitors (other colors) are shown. An anti-correlation can be seen
between the coherent edge position and the beam position as it drifts. If the coherent peak drifts
too high, then the polarization decreases. If the peak drifts too low, then the high energy photon
statistics are decreased. An example of the instability in the coherent edge fit parameters as a
function of time from the CPP experiment is shown in Figure 7.

Currently, adjustment of the coherent peak position is done manually by shift takers through the
GUI shown in Figure 5. This involves moving the coherent edge to within ± 10 MeV of the desired
edge value at the start of each run (approximately every 2 hours during data taking). ”Nudging”
the peak technically corresponds to tuning the orientation of the diamond via the pitch and yaw
angles. An alignment procedure is performed on the goniometer at the beginning of each run period
that leverages the Stonehenge fitting procedure described in [12]. This procedure allows us to keep
one of the diamond orientation angles fixed while permitting changes in the other orthogonal angle.
Some difficulties in nudging the coherent peak arise from the fact that the fitter only works in the
near neighborhood of the energy peak. In addition, there is a significant time lag on the goniometer
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Figure 6: Example of coherent bremsstrahlung edge drifts as a function of beam position drifts.
(See text.)

20 22 24 26 28 30 32
time(days)

30

40

50

60

70

80

90

100

E
dg

e 
H

al
f-

w
id

th
(M

eV
)

5780

5800

5820

5840

5860

5880

5900

E
d

g
e 

p
o

si
ti

o
n

 (
M

eV
)

Coherent Edge half-width From Fit

Figure 7: Coherent edge fit parameters for half-width (black plotted against left axis) and position
(red plotted against right axis). This is from data taken during a portion of the CPP experiment
in the Summer of 2022.

motor motion as well as the response of the readout spectrum. This is typically around 30 seconds
each time the peak is ”nudged” by the shift worker.

This project aims to replace the manual tuning of the coherent peak done at the beginning of
each run with an AI/ML based system that would perform continuous, real-time tuning. Figure 8
shows a calculation used to estimate the potential benefit of the proposed work. The left plot is a
histogram of the measured edge positions for the peak relative to the nominal position of 5820 MeV
for times when the beam was on and the Data Acquisition system was active. The vertical lines
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indicate the ± 10 MeV window the proposed work will confine the coherent edge to via AI/ML
based control. The curve on the right plots the (normalized) FOM as a function of the coherent
edge position integrated over a fixed window of 500 MeV. The FOM is calculated from:

FOM = ℘2 × dN/dt× E2, (1)

where ℘ is the polarization, dN/dt is the coherent bremsstrahlung rate as a function of energy, and
E is the photon energy (squared due to the Primakoff cross section). The 500 MeV integration
window was fixed based on the optimal window position for a coherent edge position of 5820 MeV.
The vertical axis of the right side of Figure 8 therefore represents the fraction of signal statistics
as a function of the coherent edge position. The lines on the plot indicate the points for statistical
losses of 0.5%, 1%, and 2% correspond to coherent edge drifts of 21 MeV, 29.5 MeV, and 42 MeV
respectively.
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Figure 8: Figure of merit estimation of potential gain based on 2022 Charged Pion Polarizability
(CPP) experiment. Left: Distribution of measured peak positions relative to the nominal position
of 5820MeV. Right: Figure Of Merit as a function of measured peak position. Y-axis is fraction
of statistics lost due to coherent peak drifting away from nominal (see text).

All ±10MeV window

Avg. iFOM 0.9909 0.9998

lost statistics 0.906% 0.019%

equivalent beam time lost 2.3 days/year 0.05 days/year

Table 2: Estimated benefit per year of successful implementation of proposed work. (Hall-D Po-
larized Photon Source part only).

Table 2 indicates the estimated equivalent value of statistics gained if the proposed work is
successful. The values come from the convolution of the two plots in Figure 8 with the left side plot
centered on the peak position of the right side plot. The “All” column includes the entire spectrum
while the “±10MeV window” column includes only the data within the limits shown on the left
side plot. The “±10MeV window” column therefore represents the practical limit of statistical loss
compared to optimal. As noted in the previous section, the accelerator operating cost is estimated
at ∼ $10k/hr-$15k/hr making this a significant gain.
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B Project Objectives

The primary objective is to improve polarization for fixed target experiments at Jefferson
Lab through the use of automated AI/ML controls.

There are multiple parts to the project and within those, multiple objectives. For the purposes
of this section, the objectives are grouped relevant to the domains of Nuclear Physics (NP) and
Data Science (AI/ML).

B.a NP Objectives

NP1. Polarized Cryogenic Target Optimization: The problem is that the microwave frequency
corresponding to optimal polarization at any point in time is a function of several parameters:
1) thermal fluctuations, 2) beam trips, 3) target degradation and 4) time since target anneal-
ing. It is difficult for a human to predict the optimal polarization when manually adjusting
the microwave frequency occasionally during the run.

NP1: The objective is to learn the optimal microwave frequency control policy to
maximize the target polarization continuously throughout an experiment such that it
is 0.5% better relative to the current technique.

NP2. Hall D Polarized Photon Source: The problem is that the angles of the diamond radiator
corresponding to the maximum photon beam polarization are a function of several parameters
including: (1) changes in the electron beam position/energy, (2) thermal effects, (3) diamond
degradation and (4) vibrational effects in the goniometer on which the diamond is mounted.
Human adjustment of these is done occasionally and via trial and error every few hours.

NP2: The objective is to continuously learn and apply autonomous, real-time angular
shifts to the goniometer that nudge the coherent peak of polarized bremsstrahlung
photons to its nominal position. This will keep the coherent peak to within 10MeV.

B.b AI/ML Objectives

The project objectives are organized into two parallel applications of uncertainty-aware surrogate
models to experimental control and two independent applications of that AI/ML research to real
NP scientific facilities. Details of each of these objectives are discussed in Section C.

Model Development:

ML1. For NP1, develop a model for NMR signal extraction.

ML2. Uncertainty-aware surrogate models

ML2.1. For NP1, develop and evaluate a surrogate model that captures uncertainties for
microwave frequency control that optimizes polarization of the cryogenic target.

ML2.2. For NP2, develop and evaluate a physics-informed ML-based surrogate model.
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Control Applications:

CA1. ML-based controllers

CA1.1. ML-based control system for Hall B polarized cryogenic target microwave fre-
quency control.

CA1.2. ML-based for continuous real-time tuning of the orientation of the Hall D diamond
target.

C Proposed Research and Methods

C.a Polarized Cryogenic Target Optimization

The current proposal is to apply AI/ML in two parts to address the issue of continual control
of the microwave frequency such that the polarization is optimized. The first will be to develop
a model to extract polarization signal directly from the NMR system response. Identifying the
current background from each signal dynamically will allow a clean extraction of the polarization
without the need for frequent background measurements or polynomial fits to correct for signal
drift. This will result in a higher quality signal value since it will effectively be subtracting the
current background as opposed to one measured in the past. Many thousands of NMR signals from
past JLab experiments are available to train models on both background electronic responses and
polarization signals. We plan to start by leveraging a technique developed at the University of
North Carolina using Cyclic positional U-Net[13]. The technique was developed to extract signals
from germanium based detectors under this same funding program.

The second part of the effort will be the use of extracted NMR signals along with the historical
data stream consisting of beam current (including trips), annealing events, and temperature to
identify and set the optimal microwave frequency. Automating the necessary microwave frequency
changes will remove the need for the effort of trained target operators and experts who must
constantly monitor the polarization during running. It will also improve the final polarization by
reducing the opportunities for user error and delays in user action.

A reach goal for this part of the project would be for the system to estimate the integrated
beam×polarization at some point in the future to determine the optimal beam current. This would
rely on effects such as a slightly lower beam current causing a slightly lower target temperature
resulting in a higher polarization. Such a self-driving experiment could result in a data set with a
similar number of signal events but a smaller background, improving the systematic uncertainties.
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C.a.1 Timetable of Activities - Polarized Target

Duration Activity

1 month
Identify and curate appropriate historical data sets of measured polarization.
This will include the CLAS12 Run Group C archives.

3 months
Develop simulation of target polarization behavior based on historical archives
that can be used for AI/ML model development.

1 month
Collect historical waveform data for NMR signal from polarized target and
prepare for use in model training.

3 months
Implement signal extraction technique for accurate extraction of NMR signal
from electronics background.

3 months
Identify and train an appropriate model for controlling microwave frequency
based on historical data and direct NMR feedback. This should start with a
Deep Reinforcement Learning model.

3 months Test model against simulation and adjust to optimize performance.

3 months
Utilize the Polarized Target Group’s test facility to test the model and further
refine it.

2 months
Integrate models and appropriate codes into the AI/ML controls ecosystem
and deploy in Hall-B.

3 months
Improve the simulation accurately simulate high luminosity beam conditions
in Hall-A for SoLID.

2 months Duplicate and refine model developed for CLAS12 for use in SoLID.

24 months TOTAL

C.b Hall D Polarized Photon Source

This project proposes to replace the manual tuning of the coherent peak done at the beginning of
each run, with a continuous real-time tuning. The bremsstrahlung coherent peak will be adjusted
through a control loop that leverages AI to minimize the number of steps needed to tune the peak
within a precision of 10 MeV from the nominal peak. The proposed procedure will take into account
the peak position, electron beam energy, electron beam positions and photon beam positions. This
information will be converted into two motor motions based on the polarization plane, and six input
parameters. The input data can be taken from the MYA EPICS archive for recent time periods
when the beam current was non-zero using an average over a time interval.

In summary:

• This new automated procedure will result in a larger figure of merit for the experiment due to
higher degree of linear polarization of the photon beam when integrated over time as well as
in larger statistics, as the polarization and the coherent peak enhancement both have sharp
drop offs on both sides of the coherent edge. Thus, we will avoid smearing the edge by not
maintaining a constant the peak position. With a smeared edge, one would need to select the
energy cuts for coherent peak range within the area that excludes the nominal position of the
coherent edge itself, thus reducing the average polarization and the data sample. Therefore,
this procedure will improve the figure of merit for all experiments in Hall D involving linearly
polarized photon beam including GlueX.

• The fact that the peak position is smeared because of the lack of control of the goniometer
angles also results in a larger systematic uncertainty for the measured polarization using the
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triplet polarimetry, which will directly translate into larger systematic uncertainties for the
measured asymmetry observable.

A reach goal of the project will be to track and predict when the running experiment will benefit
from moving the beam spot to a new location on the diamond. This will involve using the original
x-ray scans of the diamond and a digital-twin like simulation to estimate the localized degradation
of the diamond quality as a function of the beam dose, position, and measured coherent spectrum.
The system would advise experimenters when such a change would benefit the experiment overall
and the position of the diamond that should be moved into the beam.

C.b.1 Timetable of Activities - Polarized Source

Duration Activity

1 month
Identify all potentially relevant parameters (e.g. beam positions, energy, col-
limator, etc..) and gather historical data. Curate into form suitable for pro-
cessing with modern data science tools.

2 months Identify “nudge” events and responses to build data set for training.

1 month
Perform Shapley analysis based on polarization FOM (= pol2×photonenergy)
to determine most relevant parameter set.

4 months
Develop and train model to predict polarization FOM based on available in-
puts.

3 months
Connect AI/ML model from the larger lab DS ecosystem to the control system
for the goniometer. Include appropriate elements into the standard control
system GUIs.

1 month
Develop safety policies for operation of the system. Interface with the EPICS
alarm system.

1 month
Create outward facing monitoring pages for the system using Grafana or sim-
ilar.

3 months
Create simulation of realistic operating conditions that includes regular beam
trips, DAQ transitions and configuration changes.

1 month Refine model and deployment to operate in continuous mode.

1 month
Port existing UConn beam spot finder tool webpage into format that can be
used via command line interface.

4 months
Build digital twin like model of diamond based on existing x-ray scans. Map
should be adjusted based on integrated beam spot size, and conditions during
operation.

2 months
Implement automated monitoring system that uses input from digital twin
to determine optimal location on diamond. Notify experimenters when new
position should be used.

24 months TOTAL

C.c Data Science Research and Methods

C.c.1 ML1: Develop A Model For NMR Signal Extraction.

ML1 requires the development of an ML model to extract a clean, near-real-time polarization
signal from the raw NMR signal. The resonant circuit of the continuous-wave NMR system is
coupled to the magnetization, and thus polarization, of the target material when the circuit is
swept in frequency through the larmor frequency of the species of interest. The circuit itself
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contributes a background response versus frequency that must be removed to isolate the response
from the material’s polarization[14]. Historically, these backgrounds have required performing
special measurements regularly throughout the experiment, and drifts in the circuit response over
time required further correction, which have introduced error, particularly during real-time data-
taking. Near-real-time NMR signal cleaning will directly extract the polarization for each signal,
providing real value to Hall B and future polarized target experiments by reducing polarization error
from background fits. The accurate extraction of the polarization in near-real-time is required for
the control of the microwave frequency, and is thus the development of ML1 is critical to the
implementation of ML2.1 and CA1.

We will leverage a signal extraction technique, the Cyclic Positional U-Net (CPU-Net)[13].
CPU-Net has demonstrated the ability to learn a detector pulse transformation without explicit
programming of detector physics. CPU-Net is built on a 1-D U-Net[15] architecture, and we expect
to employ CPU-Net to subtract the drifting electronic baseline with low latency.

C.c.2 ML2: Uncertainty-Aware Surrogate Models

The research team will use ML methods with well-calibrated[16], out-of-distribution (OOD)-aware
uncertainties to develop surrogate models to explore experimental control policies. Previous work
under LAB-20-2261[9] demonstrated successful control of drift chamber gain throughout multiple
run periods using a Gaussian Process (GP)[17]. The GP provided well-calibrated uncertainty of
predictions. High voltage control of the drift chamber was performed only when predictions were
within an uncertainty threshold; otherwise, the drift chamber was returned to the traditional high
voltage, and additional data was collected that was used for offline training of the GP to increase
the in-distribution coverage of a re-trained GP. GP’s are applicable in control scenarios with a small
number of observations due to O(n3) and a smaller number of features.

When the number of observations, features, or both exceeds the feasibility of a GP, techniques
such as Spectral-normalized Neural Gaussian Process [18] provide the expressiveness of a Deep
Neural Network (DNN) and the OOD uncertainty awareness required for our applications. This
approach has been used in recent work for anomaly detection for Spallation Neutron Source at
ORNL [19] and for a regression model for the Fermilab Booster Accelerator Complex [20].

Monte-Carlo (MC) Dropout [21] is an additional technique to estimate DNN prediction un-
certainty and may provide a valuable comparison to GP-based uncertainty estimates. The MC
dropout approach relies on introducing a tunable uncertainty parameter into a network training
process by adding a dropout layer that randomly removes nodes from the following layer with a
set probability at each forward pass. The MC dropout technique can overcome the computational
challenges of estimating uncertainty using Bayesian models and can be used as a second method
to compare predictions and estimated prediction uncertainties. The review by Abdar et.al [22]
provides comprehensive details on estimating uncertainty in deep learning.

ML2.1: Polarized Target

We propose creating a data-driven surrogate model of the cryogenic target polarization using
historical data, including thermal fluctuations, beam trips, target degradation, and time since target
annealing. This surrogate model will be our offline, ML-based system to simulate the behavior of
the target over time and as conditions change. Previously, the development of a Monte-Carlo
simulation was in-progress[23]; however, the MC simulation has not yet been validated, is not
expected to be differentiable, and the use of this simulation is expected to be relatively slow for
training an AI-based controller.

We propose to develop the data-driven surrogate model of the target’s polarization using the
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many thousands of available historical data files from Hall B experiments from 2003 to 2022. Even
with the thousands of experimental data files, we do not expect complete coverage of the input
feature space. We desire an ML method that recognizes data that is OOD of training data, and the
OOD distance must be well-calibrated. Uncertainty awareness in an ML surrogate model is critical
for safe and interpretable machine learning and informs the control policy when the predictions are
no longer reliable, i.e., predictions with high uncertainty. Traditional ML methods poorly estimate
uncertainties, especially OOD uncertainties.

ML2.2: Polarized Source

The primary application for this use case is to create a surrogate model of the polarization FOM
system. We will use historical data to develop the uncertainty-aware surrogate model. This will
provide a fast inference model that is needed to train the ML-based control models. Additionally,
using an ML-based surrogate model ensure that it’s differentiable since this is required to train the
DMPC control model described in Section C.c.5.

We know that the diamond target degrades overtime, which needs to be modeled in order
to properly capture the time-dependent performance of the system. In order to extract that from
data, we propose to use data-driven discovery methods, such as the sparse identification of nonlinear
dynamics (SINDy) [24] approach, to extract the dominate terms.

C.c.3 CA1. AI-based Controllers

Utilizing the ML-based surrogate models in Section C.c.2, we will exploit the uncertainty estimation
techniques to enable uncertainty-aware AI-based controllers for both the polarized target (NP1)
and polarized source (NP2). The uncertainty estimates provided in conjunction with the policy
model’s predictions determine how reliable the predictions are. Each application can determine its
reliability threshold and the control behavior based on prediction uncertainty. Both NP1 and NP2
propose replacing manual adjustments by shift takers with AI-based control; however, with well-
calibrated, distance-aware-UQ control policies, if experimental conditions stray into feature space
that is OOD from training data, shift takers could be alerted and traditional, manual methods could
resume until experimental conditions return to feature space with higher control policy certainty.
Ultimately the data gathered during traditional/manual adjustment could be used as additional
training data control policy, resulting in less OOD feature space.

Both NP1 and NP2 will learn control policies that may include physics constraints, take ad-
vantage of prediction uncertainties from the surrogate model, and provide control predictions with
the associated estimated uncertainties.

For this proposal, we will explore the use of Deep Model Predictive Control (DMPC) and Deep
Reinforcement Learning (DRL) which are two actively evolving and powerful control techniques.
Each technique has strengths and weakness which can be leveraged to solve the technical problems
in this proposal and will be discussed below.

Model predictive control (MPC) is a control method that uses a system model to predict the
future actions of a system time horizon. MPC performs very well when the system model is accurate
and there is an existing reference control target. By introducing a deep learning policy model (π)
in the MPC workflow we can provide fast inference and the ability for continuous learning. In
order to use DNN model for the policy model the system model must be differentiable to be able to
back-propagate when training the policy model. It should be stressed that the policy developed by
the DMPC controller is only as good as the system model and will need to be continuously refined
using new data when the experimental configuration changes.

Reinforcement Learning (RL) is aimed at optimizing the control or planning of complex tasks
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by interacting and learning from the environment. The main components of RL are an environment
and an agent, as shown in Figure 9. In this proposal, the environment encapsulates the experi-
mental information (our surrogate models) that is relevant to the optimization task. The agent is
composed of the control policy along with other critical tools that help guide the exploration of the
environment and eventually train an optimal control policy. The learning process for the control
policy is iterative and involves interacting between the agent and the environment. During the
interaction at time step t, the agent receives the current observable state St from the environment
and applies an action At. Based on this action, the environment updates its internal state and
observation state St+1, and provides the actor with a quantitative value for how “good” the action
was (aptly called the reward) Rt+1. The goal of the agent is to maximize the total reward over a

48 Chapter 3: Finite Markov Decision Processes

these actions and presenting new situations to the agent.1 The environment also gives
rise to rewards, special numerical values that the agent seeks to maximize over time
through its choice of actions.

Agent

Environment

action
At

reward
Rt

state
St

Rt+1

St+1

Figure 3.1: The agent–environment interaction in a Markov decision process.

More specifically, the agent and environment interact at each of a sequence of discrete
time steps, t = 0, 1, 2, 3, . . ..2 At each time step t, the agent receives some representation
of the environment’s state, St 2 S, and on that basis selects an action, At 2 A(s).3 One
time step later, in part as a consequence of its action, the agent receives a numerical
reward , Rt+1 2 R ⇢ R, and finds itself in a new state, St+1.

4 The MDP and agent
together thereby give rise to a sequence or trajectory that begins like this:

S0, A0, R1, S1, A1, R2, S2, A2, R3, . . . (3.1)

In a finite MDP, the sets of states, actions, and rewards (S, A, and R) all have a finite
number of elements. In this case, the random variables Rt and St have well defined
discrete probability distributions dependent only on the preceding state and action. That
is, for particular values of these random variables, s0 2 S and r 2 R, there is a probability
of those values occurring at time t, given particular values of the preceding state and
action:

p(s0, r |s, a)
.
= Pr{St =s0, Rt =r | St�1 =s, At�1 =a}, (3.2)

for all s0, s 2 S, r 2 R, and a 2 A(s). The function p defines the dynamics of the MDP.
The dot over the equals sign in the equation reminds us that it is a definition (in this
case of the function p) rather than a fact that follows from previous definitions. The
dynamics function p : S⇥R⇥ S⇥A! [0, 1] is an ordinary deterministic function of four
arguments. The ‘|’ in the middle of it comes from the notation for conditional probability,

1We use the terms agent, environment, and action instead of the engineers’ terms controller, controlled
system (or plant), and control signal because they are meaningful to a wider audience.

2We restrict attention to discrete time to keep things as simple as possible, even though many of the
ideas can be extended to the continuous-time case (e.g., see Bertsekas and Tsitsiklis, 1996; Doya, 1996).

3To simplify notation, we sometimes assume the special case in which the action set is the same in all
states and write it simply as A.

4We use Rt+1 instead of Rt to denote the reward due to At because it emphasizes that the next
reward and next state, Rt+1 and St+1, are jointly determined. Unfortunately, both conventions are
widely used in the literature.

Figure 9: The agent-environment interaction in a reinforcement learning workflow [25]. The agent
executes a policy that selects an action At given the current St, which results in a reward Rt+1 and
a new state St+1 of the environment.

defined number of steps.

Within the RL algorithm, the total reward can be calculated using Bellman optimality equation
as stated in Equation 2. Where Q(S,A) is a long term expected reward (also called Q-value) for
taking action A at state S, Rt+1 is the instantaneous reward, γ is the discount factor that is used
to weight long term reward, and Q(S′, A′) is the maximum Q value that can be achieved at next
state S′.

Q(S,A) = E

[
Rt+1 + γmax

A′
Q(S′, A′)

]
(2)

In Deep Reinforcement Learning (DRL), the agent is composed of ML-based (deep learning)
model(s).

C.c.4 CA1.1 ML-based Control System For Hall-B Polarized Cryogenic Target Mi-
crowave Frequency Control.

The DMPC method requires a fully differentiable system model, and while [23] began the devel-
opment of a simulation of the polarization over time as a function of microwave frequency, it is
unclear if the system was developed to support backpropagation for the ML training workflow. Con-
sequently, to address CA1.1, we propose to develop an offline DRL model to learn the microwave
frequency control policy to optimize target polarization.
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C.c.5 CA1.2. ML-based Continuous Real-time Tuning Of The Orientation Of The
Hall-D Diamond Radiator.

For this use case there is a physics system model [26], [27] and known reference targets; therefore,
we will initially explore the use of DMPC method. DMPC provides a simpler solution to the DRL
since it has additional information.

C.c.6 MLOps, Monitoring, and Controls

An accurate and robust monitoring system is required for an ML system to sense its environment
and take appropriate actions in given situations. It requires access to all the quantities needed
for decision-making for control and to know when control has been successfully executed. We will
exploit the Experimental Physics and Industrial Control System (EPICS), the MLFlow centralized
model repository, and Granfana dashboards; all are already in use at Jefferson Laboratory. EPICS
provide access to the parameters that models would need and access to controls via well-established
APIs. MLFlow provides API access to published ML models, and Grafana is currently used for
real-time monitoring of ML implementations. Examples of Grafana’s use at Jefferson Lab for
ML monitoring are for the drift chamber control system completed under LAB-20-2261[9] and for
Hydra[28], an ML system for data quality monitoring, currently used in three of Jefferson Lab’s
experimental halls.

C.c.7 Novelty and Impact

Although we expect the number of features to be few, ten to twenty, the number of samples is large,
on the order of thousands, making a GP computationally impractical. A GP with well-calibrated
uncertainty estimates would be ideally suited for real-time control for both the Polarized Cryogenic
Target Optimization and Hall D Polarized Photon Source. An uncertainty-aware surrogate model
of Fermilab’s Booster Accelerator Complex [29] demonstrated an out-of-distribution aware deep
learning model by adding a radial basis function kernel to the final layer of a deep neural network
(DNN). Distance awareness between input and DNN output was preserved using a bi-Lipshitz
constraint as part of the training loss function. Model uncertainty calibration was confirmed using
the Uncertainty Toolkit [16], which can also be utilized for after-the-fact calibration if required.
Methods, such as DGPA, that address the importance of uncertainty in real-time experimental
controls and consider the requirement for a large number of examples to learn control policies will
impact both data science and the nuclear physics program.
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Appendix 2: FACILITIES

0.1 Thomas Jefferson National Accelerator Facility

The proposed research will be carried out at Jefferson Lab and the partner institutions: The College
of William and Mary and Carnegie Mellon University. The major equipment on which this work
will be based is part of the standard Jefferson Lab facilities. These are listed in the tables below.
The fraction of the listed resources needed for this project are modest (<1%) and will not disrupt
current operations at the lab.

The research team will have access to the major equipment when it is not actively in use by
a running experiment. All members of the research team currently have or will have access to
a portion of the computational resources of the IT division of Jefferson Lab. For the needs of
the proposed research the research team will have ready access to the dedicated machine learning
nodes, ample CPU compute power, and sufficient storage (several TeraBytes).

Additionally, the research team will have access to the existing historical data archives of all
four experimental halls for the purposes of this project.

Compute Resources

• GPU-enabled Machine Learning worker nodes

• 8 NVIDIA A100 GPUs (80GB)

• 56 NVIDIA T4 GPUs

• Equivalent of 9000 cores of AMD Milan CPUs drawing from several generations of Intel and
AMD CPUs

• LQCD compute clusters including

• 400 KNL nodes cluster (OPA fabric)

• 256 NVIDIA 2080 GPU cluster (OPA fabric)

• 64 AMD MI100s GPU cluster (InfiniBand EDR fabric)

Test Stand Hardware Resources

• R&D computing resources in the TJNAF data center and associated lab spaces in CEBAF
Center with fiber optic connectivity between them

• Access to TJNAF compute cluster for testing at scale

• 6 Compute Servers with FPGA and NVIDIA dual-port ConnectX-6Dx and 100Gbit Ethernet
NIC

• File server with multiple NVMe drives, FPGA and NVIDIA dual-port ConnectX-6 DX and
100Gbit Ethernet NICs

• Arista 400Gbit capable Ethernet switches

• Access to TJNAF streaming data sources and NP experimental data as test data source

• The NVIDIA ARM HPC Development Kit

• High speed networking including EDR InfiniBand and 400Gbit Ethernet

Storage capabilities for varying IO profiles
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• 6PB in two Lustre Parallel filesystems

• 5PB NFS and XRootD storage on ZFS

• A tape library capable of over 100PB of long term storage

• Burst disk storage for tape buffering at ¿10 gbps

Data center and Wide area Networking tuned for scientific workflows

• Internet-facing Science DMZ network for fast off-site data transfer including Globus and
XRootD Data Transfer Nodes; jumbo frame support

• Dual 10Gbit internet connections. An upgrade to dual 100Gbit connections is in process with
ESNet

• Data Center EDR Infiniband and OPA fabrics

• Data center 100Gbit Ethernet redundant routed core network with support for virtual ma-
chines on an ESX cluster

Software Infrastructure

• Jupyter Notebook environment with GPU capabilities

• Slurm Fairshare job scheduling for all clusters

• MPI and parallel job support

• Complex batch workflow orchestration tooling (SWIF)

• Full Open Science Grid Support including HTCondor

• Federated identity support for remote users including InCommon, SciTokens, Shibboleth,
COManage, and CILOGON.

Data Center Capabilities

• Rack Space, power, and cooling for hardware installs including

• Hot aisle containment for air cooling

• 3 Phase 208VAC power to racks (typical: 2x50A @ 208V)

• UPS, generator, automatic power transfer to two substations
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Appendix 3: EQUIPMENT

0.2 Thomas Jefferson National Accelerator Facility

Major equipment items such as the polarized targets and photon sources already exist. The only
equipment needed that is not already available will be personal computers for the new hires which
will be purchased using funds from this proposal.
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Appendix 4: DATA MANAGEMENT PLAN

The proposed work involves no sensitive or personally identifiable information. As such, this work
will follow the DOE Office of Science Statement on Digital Data Management, as well as the
guidelines for data management set forth by Jefferson Lab’s Scientific Computing Division.

0.3 Data Sources

Most of the data necessary for this work will come directly from or be derived from the quantities
stored in the EPICS archive system at Jefferson Lab. Additionally, data from feedback systems,
such as those required to measure target polarization, will be required. These data will be stored in
appropriate forms in keeping with best-practice and established systems. For example, data stored
in a database in the case of the EPICS archive and histograms derived from root files in the case
of measured quantities as produced via an analysis.

0.4 Types of data

Raw data

Raw data for use in the proposed work will be primarily stored in human readable formats as
well as containerized formats such as ROOT histogram files, h5 formatted files, etc.

Meta data

Meta data involved in analysis or scientific record keeping may involve text files, root files, or
other saved file formats (eg JSON) and will be sufficient to provide repeatability of analyses.

0.5 Data Sharing

Believing that the sharing of data fosters innovation and advancement all data used in the course of
this research will be made public. Produced codes will be preserved in an open GitHub repository.
Any models produced along with their metadata will be permanently archived on magnetic tape
at Jefferson Lab. Items stored as “production” in the archive are automatically copied to a second
backup tape that is stored in a protected vault ensuring preservation in the event of catastrophe.
Other documents generated and classified in the course of this project will be shared among col-
laborators from the start of the project, and will be continually upgraded and updated. E-mail
will be the most common method to share information. Prior to making them available for wider
distribution, such as through journal publications or conference presentations, applications for the
protection of Intellectual Property would be filed, as agreed upon by all collaborators.

0.6 Data Preservation

This research has no need for any personally identifiable information (PII), nor does it have the need
for any sensitive information related to national security interests or any other interests outside of
the advancement of the scientific objectives of the Department of Energy (DOE). Any data gathered
or produced in the course of this research will thus be stored in an unencrypted, human readable
(where appropriate), format suitable for the training and/or testing of the models produced in the
course of this research. Any codes developed during this research will be version controlled by and
stored on github.com. Upon completion of the research the code will be made open source and
released, with suitable documentation to the public. In this way future projects may benefit from
the models and code developed in pursuit of the proposed research.
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All the electronic files generated for this project will be preserved according to Jefferson Lab’s
record management policy (https://www.jlab.org/div dept/cio/IR/records/index.html) and DOE’s
Research and Development Records Schedule (http://www.archives.gov/recordsmgmt/rcs/schedules/departments/department-
of-energy/rg-0434/n1-434-08-002 sf115.pdf).

0.7 Data Validation

All data used in analysis, model development, or other related activities will be validated before
use or publication. This validation may include expert review as well as checks for consistency.
These consistency checks may include redundant backups with checksums as well as checks like
those performed in continuous integration.
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Appendix 5: PROMOTING INCLUSIVE AND EQUITABLE RE-
SEARCH (PIER) PLAN

The proposal team includes staff from Jefferson Lab, Carnegie Mellon University and William &
Mary. William & Mary is classified as a R2 university. Over 30% of the team identify as women,
and one of these is a member of the GlueX collaboration’s Diversity and Inclusion subcommittee.
The graduate students for this project will be hired by the universities. The postdocs will be hired
by Jefferson Lab and William & Mary.

0.8 Outreach Strategies

The proposal team has integrated several students from regional universities, such as Old Dominion
University, William & Mary, and the University of Virginia (UVA), into data science and accelerator
projects at Jefferson Lab. In addition, the proposal team has provided opportunities to UVA’s
Master of Data Science students in the form of real world research problems for their Capstone
projects, and is mentoring the student researchers.

We propose to organize a data science workshop for local middle schools. Adolescent years
are a critical stage when role models, peer and societal pressures form an influence which can
be critical to the student’s eventual career path (see https://doi.org/10.1002/sce.21492 and
https://journals.aps.org/prper/pdf/10.1103/PhysRevSTPER.5.010101). Jefferson Lab’s Ac-
tivities Group already has a strong relationship with local schools. We will form a partnership
between this network and our project team to organise an afternoon ‘hackathon’ workshop, where
the students write their own code to explore data science techniques and solve real life problems.
The project team will lead the workshop in person.

Hampton University Graduate Studies (HUGS), a summer session at Jefferson Lab, is for ex-
perimental and theoretical nuclear and particle physics graduate students who have completed
their studies and have at least one year of research experience. Jefferson Lab’s data science de-
partment has presented talks at HUGS on distributed computing and an overview of data science
techniques. We propose to expand our contribution by providing a mini-workshop within HUGS
focused on teaching introductory techniques used in this proposal. The curriculum will include
hands-on tutorials on building surrogate models and applications of control techniques.

0.9 Development & Mentoring

The postdocs and graduate students joining the project team will be mentored by project staff.
Mentors are required to complete the ethics and mentorship course ‘Mentoring at Jefferson Lab’
that addresses trust, respect, and open communication. Students are required to complete the
course ’Fostering a Positive and Respectful Workplace’ that teaches cultural norms, community
standards, and ethics. Students are also invited to use their voice, participating in networking
events promoted across the campus to foster inclusion.

Opportunities for professional growth include presenting at workshops and conferences and
publishing our work. Junior staff within the project team receive priority for conference attendance,
and the publications are prepared collaboratively. Conference presentation statistics are noted and
reviewed to ensure parity. The team also has a regular series of meetings where staff present new
works from the literature and lead an informal discussion; the leadership of each meeting rotates
throughout the group.
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0.10 Diversity, Equity, Inclusion and Accessibility (DEIA) at Jefferson Lab

Everyone at Jefferson Lab has a responsibility to foster an environment where all employees, users,
students, guests, visitors, and subcontractors feel safe, welcomed and supported in advancing the
Lab’s mission. Expectations are outlined in Jefferson Lab’s Community Standards as well as the
Lab’s Standards of Conduct & Code of Ethics. Jefferson Lab actively promotes a diverse and
harassment-free experience for all. Jefferson Lab contracts with an independent reporting service
to provide an Ethics Hotline - a risk-free way to anonymously and confidentially report concerns
that may involve unsafe, fraudulent, unethical, or otherwise inappropriate behavior.

Jefferson Lab partners with Circa, a diversity recruiting network, to target job boards and
organizations for women, minorities, and individuals with disabilities. DEIA is integrated in all
recruiting cycle policies, procedures and practices.

0.11 Carnegie Mellon University

Naomi Jarvis is a Research Scientist in the Department of Physics at Carnegie Mellon University.

Carnegie Mellon University has multiple college and departmental initiatives that the senior
investigators use to promote inclusive and equitable research within their research groups.

Our graduate admissions committee receives instructions from our College of Science’s Associate
Dean for Diversity, Equity, and Inclusion (DEI) on selection practices to promote a diverse graduate
student population. The College and the Department participate in conferences and other targeted
opportunities to advertise our graduate program to members of underrepresented groups, to expand
the applicant pool. To serve on faculty search committees, members of the faculty must attend
training on equitable search practices offered by the College. Similarly, faculty members hiring
postdocs may be advised on those practices by the College on a voluntary basis.

There are also numerous groups at CMU dedicated to providing a supportive environment to
members of our community from a variety of underrepresented groups; these include not only
support groups, but also training services such as Tartan Allies, which provides regular training to
university members committed to inclusion of LGBTQ+ members of the community.

Our department participates in the American Physical Society Inclusion, Diversity, and Equity
Alliance (IDEA), which facilitates sharing of experiences and best practices between departments
that seek to improve DEI. This year the Department’s focus in APS IDEA is on developing spaces
where all members, including those from underrepresented groups, feel a sense of belonging and
inclusion.

This and other DEI initiatives are driven by the department’s DEI committee, which engages
actively with the Department including an anonymous feedback form used to identify issues for
resolution. Department trust in and engagement with this committee is essential especially for early
career department members, who may not feel empowered to openly speak up in situations with
tricky power dynamics. Our Department also has a group, ‘Constructive Interference’, dedicated
to supporting women and minorities in physics.

The Department has adopted a shared leadership model for some committees, providing oppor-
tunities for graduate students and postdocs to serve, which increases their sense of belonging while
also providing them with training opportunities for their future careers. Graduate program pro-
cesses are documented in a handbook that is used to communicate expectations clearly to students
and faculty. The Department also has a graduate program committee that works to ensure depart-
mental awareness of those processes meant to support the training and professional development of
the students. These processes include the early formation of a thesis committee and annual reviews
to ensure progress towards a degree and provide students with opportunities to form mentoring
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relationships with faculty besides their direct supervisors.

0.12 William & Mary

Cristiano Fanelli is an Associate Professor in the recently formed Data Science Department and
also affiliated with the Department of Applied Science at William & Mary (W&M).

The Department of Applied Science recognises gender parity as an important aspiration and
is committed to recruiting highly qualified women with interdisciplinary scientific foci. For all
new hires, the department has set up multiple mentoring relationships within and outside of the
department for its diverse faculty to have multiple support structures. Furthermore, the department
has advocated for maximally advantageous start-up packages for our new hires, particularly women.
The Department’s DEI workplan has three outcome-driven specific aims: (1) achieve and maintain
gender parity in our tenured core faculty, (2) increase the number of tenured Black core faculty
members, and (3) inculcate inclusive ideals among our students, postdocs and research staff.

Part of W&M’s overall mission is to cultivate creative thinkers, principled leaders, and compas-
sionate global citizens equipped for lives of meaning and distinction. W&M’s statement of values
includes creating a welcoming and caring community that embraces diverse people and perspec-
tives, commitment to the highest ethical standards, and treating one another with mutual respect,
recognizing and upholding each person’s inherent dignity and worth.
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