

Al for experiment control and calibration Meeting with FAIR, 10 Jan 2022

Naomi Jarvis Carnegie Mellon University

Torri Jeske, Nikhil Kalra, Diana McSpadden, **Thomas Britton**, Michael Goodrich, **David Lawrence** Experimental Physics Software and Computing Infrastructure, Jefferson Laboratory

GlueX Central Drift Chamber (CDC) – charged particle tracking and identification

- CDC: Straw tube drift chamber, measures drift time and deposited charge NIM A962, 163727 (2020)
- Time to distance calibration -> track-fitting, vertex resolution and dE/dx resolution
- Gain calibration -> stable dE/dx throughout the run, affects PID selections in analysis. Focusing on this.

Using the AI to control the CDC for stable gain and quicker calibration

Carnegie Mellon University

AIEC/FAIR meeting – 10 January 2022

3

GLUE

Operational testing during PrimEx Nov 2021

The Al-tuned HV was rounded to the nearest 5V and set manually by the shift-taker. It was constrained to 2125 +/- 20V. GCFs were obtained from dE/dx later on. The AI was not used for some runs.

Carnegie Mellon University

Jefferson Lab

GLUE

4

Operational testing - estimated GCFs likely for constant HV

Used 2018's fitted gain vs P/T, scaled to match 2021's mean GCF for runs at mean pressure (x 0.138/0.1475)

Gain was more stable with AI-tuned HV

GLUE

Summary

- Trained an AI with drift chamber environmental values pressure, gas temperature, HVB current. •
- It takes just a few seconds to run the AI. ٠
- Gained practical experience using this in fall 2021. ٠
- The data-taking team was cooperative and enthusiastic. •
- The results look good. ٠
- Next operational experience will be in June 2022, with improved user interface. ٠

GlueX Detector <u>NIM A**987**</u>, 164807 (2021)

GlueX Central Drift Chamber NIM A962, 163727 (2020)

Experimental Physics and Industrial Control System https://epics.anl.gov/

Garfield – Simulation of Gaseous Detectors <u>https://garfield.web.cern.ch/garfield/</u>

This work was supported by the US DOE as LAB 20-2261.

The Carnegie Mellon Group is supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics, DOE Grant No. DE-FG02-87ER40315.

GlueX acknowledges the support of several funding agencies and computing facilities: www.gluex.org/thanks

GlueX: meson photoproduction experiment, searching for exotics

Estimate of the range of HV needed

• Obtained new HV values for several runs spanning the pressure range from 2018

Run	GCF	Pressure from EPICS	Calibrated Pressure (mmHg)	GCF/ideal_GCF	New HV
51687	0.173	102.067	776	1.146	2137
51570	0.160	101.042	768	1.060	2129
51762	0.151	100.016	760	1.000	2125
51287	0.139	99.1262	753	0.921	2116
51160	0.132	98.4129	747	0.874	2111

New HV obtained from fit to relative GCF as function of HV

• Range of HV needed is within 12V of standard HV

Drift times simulated for HV tuned to the pressure

- Drift time to distance conversion uses a table of ideal drift times simulated for standard pressure and nominal HV 2125V (<u>GARFIELD</u>). Calibration accounts for imperfect straws and pressure.
- Calculated difference between expected and ideal drift times at extreme pressure values Faint lines: 2125V Solid lines: tuned HV
- Differences are small, smaller for tuned HV
- Tuned HV should improve the position resolution

Garfield predictions for 50/50 Ar/CO2 and 1.8T

Operational testing during PrimEx Nov-Dec 2021 – Environmental data

Carnegie Mellon University

AIEC/FAIR meeting – 10 January 2022

