
halld_recon aborting on DResourcePool static
variable deletion
This issue concerns the abrupt termination of halld_recon with jana2 at the end
of the execution when the command hd_dump ../../
hd_rawdata_121120_000.evio -Pjana:nevents=5 -DDBCALDigiHit was run.

Context:
In the file `/src/libraries/ANALYSIS/ANALYSIS_init.cc:54`, the constructor of class
`DHistogramAction_ObjectMemory` is called explicitly; thus, creating an object
of this class. This class is defined in `/src/libraries/ANALYSIS/
DHistogramActions_Independent.h` and contains several
`DResourcePool<DType*>` variables.

◦ `DResourcePool` Class:

◦ The `DResourcePool` template class is defined in `src/libraries/include/

DResourcePool.h`.

◦ The class contains a static vector member, `vector<DType*>

dResourcePool_Shared`, that behaves exactly like a global variable and is
deleted when the main program ends.

Problem Description:

When the program tries to delete the first static variable
(`vector<DKinFitConstraint_Spacetime*> dResourcePool_Shared`) belonging to
`DResourcePool<DKinFitConstraint_Spacetime>
dResourcePool_SpacetimeConstraint`, the program encounters errors such as
`malloc_consolidate(): invalid chunk size` or `malloc_consolidate(): unaligned
fastbin chunk detected`. These errors result in the program abruptly aborting.

Resolution:
The solution involves commenting out the `delete app` command located on line
78 within `src/programs/Analysis/hd_dump/hd_dump.cc:main`. This adjustment
successfully resolved the issue, suggesting that the problem might be related to
the `delete app` command interfering with the deletion of certain variables.

Possible causes:

Redundant Deletion: The static variables, vector<DType*>
dResourcePool_Shared, may have been deleted earlier when the `delete app`
command is executed and when the program is attempting to delete the same
variables again it is causing the program to abort since the variables were
already deleted by the `delete app` command earlier. By commenting out the
`delete app` command, the program avoids deleting the variables prematurely

and instead deletes them only once at the end of `main`, which resolves the
issue.

These assumptions are based on the current observations and suggest potential
causes of the problem. However, none of these assumptions are confirmed, and
further investigation and analysis are needed to determine the root cause
definitively. The reason behind this assumption is because when the `delete app`
on line 78 inside src/programs/Analysis/hd_dump/hd_dump.cc:main is
commented out the program is no more aborting.

Program Aborting Backtrace

More detailed Backtrace:
For a more detailed backtrace look at the images below

Breakpoints:

1. break src/libraries/include/DResourcePool.h:250

- Function: template <typename DType>

DResourcePool<DType>::~DResourcePool(void)

- Exact line: for(auto locResource : locResources)

2. break src/libraries/include/DResourcePool.h:252

- Function: template <typename DType>

DResourcePool<DType>::~DResourcePool(void)

- Exact line: dObjectCounter -= locResources.size(); //I sure hope this is zero!

Detailed Bracktrace:

http://hd_dump.cc

