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1 Introduction

We propose to develop and deploy artificial intelligence (A.I.) systems to adjust detector controls

during data acquisition in order to reduce, or eliminate, the need for calibrating the data offline. This

project represents a first step towards automated facilities in which “smart” detectors communicate

with each other and with A.I. embedded in the accelerator to deliver better physics results faster

and more efficiently. We believe A.I. can reduce the time it takes to process data and publish a

result by 3-6 months and although some related work in accelerator controls has started[6], this type

of A.I. control over an experimental end station detector has never been done before. If successful,

this will reduce significantly the time and effort required to calibrate large drift chamber detectors.

Multiple detectors of this type are currently in use in large scale nuclear physics experiments at

Jefferson Lab. Currently, the iterative, labor intensive calibration process extends the time needed

to publish results. This project will require one full time physicist and one full time computer/data

scientist working for 3 years under the guidance of an existing team of experienced researchers and

subject matter experts. This specific project will target CLAS12 and GlueX detector systems which

are currently in use and for which much of the data required for the project is already archived.

This project is one component of what is planned to be a much broader A.I. program at Jefferson

Lab that includes accelerator operations, experimental data quality, data analysis, and connecting

experimental results directly to theory (see section 3.6).

1.1 Experimental Nuclear Physics at Jefferson Lab

The Continuous Electron Beam Accelerator Facility (CEBAF) at DOE’s Jefferson Lab has four

experimental halls, A, B, C and D, in which separate nuclear physics experiments are run con-

currently, using the polarized electron beam from the accelerator. Halls A and C are used by

many experimental groups for short-term experiments, whereas Halls B and D house permanent

installations of the CLAS12 and GlueX spectrometers, respectively. These are operated by larger

groups - the CLAS collaboration has around 200 members, while GlueX has around 130 - and their
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experiments run for long periods of time in order to acquire the high statistics necessary for high

precision results. Both CLAS and GlueX use drift chambers, which are featured in this proposal.

The mission of Jefferson Lab (JLab) is to produce high quality experimental nuclear physics

results. The accuracy of these results and how quickly they are produced depends heavily on

the detectors and their calibration. At present, detector calibrations are a vital and extensive

step between recording and analyzing the data. High-level calibrations translate measurements

into physics quantities and many more low-level calibrations ensure that the measured data are

consistent throughout variations in local environmental conditions. The calibrations are performed

soon after the data have been collected, using software written specifically for this task. There are

many iterations of calibrations, checks and corrections, first for each sub-detector (such as a drift

chamber or a calorimeter), and then for the spectrometer as a whole. The actual data analysis for

the experiment starts after the calibrations have been completed.

1.2 Drift Chambers for Charged Particle Tracking

Drift chambers (DC) are a common detector system in Nuclear Physics, used to track charged

particles by measuring the ionization produced when the charged particles pass through a gas

volume. The liberated electrons drift towards the nearest anode wire in the chamber, ionizing

other gas atoms on their way to create an avalanche of electrons that forms the electrical pulse

whose characteristics are recorded for that wire. The gain of the chamber determines the size

of the avalanche and therefore, the height of the pulse recorded. This affects both the measured

amplitude (dE/dx) used in particle ID and the measured drift time, used to determine particle

momentum. Maintaining a stable gain is therefore critical to achieving stable detector performance.

The chamber’s gain depends primarily on the anode voltage, but is also affected by many other

variables including pressure and temperature. The pre-amplifier boards that prepare the signals

for digitization also contribute to the overall gain and will have a dependence on event rate and

temperature. Traditionally, stability of the overall gain is achieved by attempting to keep four

of these five parameters independently stable (atmospheric pressure cannot be controlled). The

atmospheric pressure is the most significant of these over larger time scales of ∼ 1hour. The GlueX

Central Drift Chamber (CDC)[4] experiences fluctuations in atmospheric pressure typically of the

order of ±2% and the resulting gain changes in the CDC are of the order of ±15%. Figure 1 shows

the atmospheric pressure recorded throughout the data-taking period in fall 2018. Figure 2 shows

the calibration gain correction factors of the GlueX CDC plotted vs. the ratio of atmospheric

pressure to temperature. It should be noted that the calibration procedure used to obtain the

values plotted in figure 2 was done independently of the pressure and temperature. A similar effect

is seen in the CLAS12 drift chambers in Hall-B. Figure 3 shows a 3-D view of the gain factors as a

function of both the atmospheric pressure and beam current. Correlations with other operational

parameters are expected, but are very difficult to disentangle using traditional means.

We propose to control the high voltage (HV) on the drift chamber anode wires, dynamically,

using an A.I. system that incorporates information from a variety of sources in the experimental

hall during data taking. In addition, the model will also predict a set of calibration constants for

the drift chambers. The input parameters will include pressure, temperature, and beam conditions
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Figure 1: Data from the GlueX Central Drift Chamber showing the change in barometric pressure
throughout the Fall 2018 run.

from the existing slow controls system. Inputs will also include reconstructed values from the data

stream which naturally incorporates information from all detector systems. Figure 4 illustrates this

concept.

2 Project Objectives

Our ultimate goal is the development of a holistic detector control system. Such a system would

decrease the time that experts are required to spend on managing their respective detector (both

in control and calibration). This time is often in short supply during experimental running. The

reduced load on experts would also provide a multitude of secondary benefits. For example, an

environmental event may require a change in controls or calibration, or in some cases cause the

detector to produce a whole host of alarms; shift crews may then call expert personnel, sometimes

erroneously, to attempt to correct the problem. Replacing the humans involved with this aspect

of the overall workflow could lead to increased productivity in other tasks and lower the costs

associated with dealing with the alarms. The specific objectives outlined in this section form the
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Figure 2: Gain factors for GlueX Central Drift chamber as a function of the ratio of barometric
pressure to temperature during Fall 2018. A relationship between chamber gain and gas density is
evident but there are several other factors at play which are not understood well. A similar effect
is seen in the CLAS12 large volume drift chambers.

first steps towards that ultimate goal. The later sections 3 and 4 describe the strategy to be used

and present the proposed schedule of activities.

2.1 Maintaining a Consistent CDC Response

The primary objective of this research is to maintain consistent detector response in reaction to

changing environmental and experimental conditions by controlling the HV of the GlueX CDC and

simultaneously generating calibration constants autonomously in near real-time.

The specific goal would be to stabilize the gain to within 5% over a 2 week period with no

measurable degradation of the timing resolution. A successful application with the GlueX CDC

would then be used to develop a similar system for the CLAS12 drift chambers, thus allowing the

solution to be generalized.

We are already aware of a clear relationship between the chamber gain on pressure and tem-

perature, but there are many other factors which we have not attempted to parameterize, such as
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Figure 3: Gain factors for GlueX Central Drift chamber as a function of both the atmospheric
pressure and the beam current during Fall 2018. This indicates the gain factors have a dependence
on both of these and that the relationship is non-trivial.

event rate, beam intensity and the currents drawn by the high voltage boards. This additional

unstudied dimensionality makes this an ideal project for artificial intelligence.

2.2 Reduce the Delay Between Data Acquisition and Analysis

By improving the control over the detector and generating an initial set of calibrations, this research

will decrease the time interval between the end of data acquisition and the beginning of analysis.

GlueX produces a set of calibration constants for each detector for every data-taking run (this

is the interval between when data acquisition is started and stopped). The duration of each run is

limited to 2h or less, to keep the gain drifts due to environmental changes at or below a tolerable

level. The calibrations require a considerable amount of expert attention and during the months

of data acquisition the detector experts are fully occupied with the experimental program, so the

calibrations start as soon as the months of data acquisition come to an end.

In the first round of calibrations, gains are calibrated for each detector independently. In

subsequent rounds, information is shared between the detectors to refine the timing offsets, and
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Figure 4: Illustration of the AI model which would take inputs from both slow controls (EPICS)
and high speed data acquisition systems to produce a predicted set of HV settings and calibration
constants that should be used together for the next run.

here the process becomes iterative as the track vertex positions from one detector are important

for the path length used to determine timing offsets for others, while the overall timing is used to

refine time-to-distance calibrations and hence track positions in others. The collaboration works to

make the calibration process as efficient as possible, the data analysis is coordinated, one person

submits all of the computer jobs for processing and a team of junior scientists monitor the results

and flag anomalies for expert attention, but it still consumes a considerable amount of time from

the dozen detector experts.

While speeding up the entire calibration process, an A.I. would reduce the time commitment

required from the experts, who would then be free to turn their attention to data analysis and our

physics program. An A.I. would also be able to take over some responsibilities from the shift crew in

charge of the detectors and the data acquisition; as the A.I. would be monitoring the environmental

conditions continuously it would be aware of unusual weather events, such as the rapidly falling

pressure that occurs when a storm front arrives, and it would be able to alert the crew of the need

to stop a run early or take the appropriate corrective steps on its own and continue running, all

without requiring expert intervention.

For this project, the objective is to reduce the number of iterations required to calibrate the

CDC or reduce the number of runs that must be calibrated.
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2.3 Facilitate the Automation of Other Detector Systems

Other detectors, such as those of the CLAS12 collaboration, are expected to benefit from similar A.I.

systems. The knowledge and experience gained here will aid the development of those systems. To

this end, the A.I. system developed in this research will be tested with the CLAS12 drift chambers.

Ultimately, experiments can be viewed as a complex, highly dimensional, coupled system. In

this view they become perfect targets for the application of artificial intelligence. By enabling

various detectors to coordinate intelligently, experiments may be able to obtain better data, and

reduce the time and effort expended to generate calibrations.

This objective will be met by producing software that is general enough to accommodate its

use on other detector systems, and open sourcing any pertinent materials produced during this

research.

3 Proposed Research and Methods

The research team has experience using A.I. in developing the Hydra system. Hydra is an A.I.

system for data quality monitoring, currently used by GlueX. Hydra was developed to remove

humans from the tedious task, one often left undone due to the demands of other work or human

fatigue, of checking a set of histograms every minute or two. It looks at detector occupancy in finely

grained time-steps and reports on the health of the detector. Hydra has the domain knowledge

of experts, does not suffer from fatigue, and can analyze a plot every 83 ms. These are especially

valuable skills for more junior shift crews. Shift crews may view a webpage which collates the results

in near-realtime and take action should Hydra detect a problem. An example of the performance

of the system, which varies by detector but is typically over 95% accurate as compared to experts,

is shown in figure 5. The experience gained working on this project makes the team well positioned

to construct a system for both calibration and control.

Several components are necessary for the development of an A.I. based system for detector

control and calibration. These are described below.

3.1 Monitoring and Controls

An accurate and robust monitoring system is required for the A.I. system to sense its environment

and take appropriate actions in given situations. It requires access to all of the quantities needed for

decision-making in order to make a plan for calibration and/or control and to know when that plan

has been successfully executed. We will exploit the Experimental Physics and Industrial Control

System (EPICS) that is already in use at Jefferson Laboratory. This system monitors all of the

conditions parameters that the A.I. would need and also provides access to the detector controls

via well established APIs.

3.2 A.I. system

The A.I. system will be comprised of several models, each trained to perform a task or distill data for

other A.I. processes. Use of unsupervised learning techniques would reduce the need for expensive
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Figure 5: Examples of CDC occupancy plots, using data collected for approximately one minute.
Hydra categorized these plots as good (left) and bad (right), and in the latter case Hydra was
99.99018% confident that there was a problem. The expert confirmed that Hydra was correct -
note the small yellow high occupancy patch to the right of the center.

operational data acquisition. For some tasks there is ample data already available, which could be

labeled by experts to employ supervised learning techniques. A mix of guided learning, in which

the system is partially trained on expertly labeled data (and further in an unsupervised way), and

reinforcement learning, which rewards or punishes the system based on in situ behavior, would also

be appropriate. The system will likely use some form of recurrent neural network (RNN) as these

are well suited for tracking trends and making predictions.

3.3 Training and Testing

Simulation of parts of the detector system would allow for a cost-effective way to generate data

for both training and testing of all or part of the A.I. system. Cosmic ray data, which are easy

to obtain, can be used to provide early tests of the system without relying on expensive dedicated

beam time.

3.4 Limitation

To provide confidence in the use of the A.I. for detector control, the A.I. must be robust, fault

tolerant, and forced to remain inside a predetermined operational envelope. This can be achieved

by having the set of operational parameters generated by the A.I. system pass through a filter. If

a parameter set suggested by the A.I. violates any constraint imposed by the filter, it would reject

the parameter set and notify experts. In this way, ultimate control would remain with the experts

and no harm could come to the detector. Initial implementations will only advise shift workers on

a suggested change of settings, so human filtering will be required until enough confidence is gained

in the system to allow for fully automated control.
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3.5 Performance Feedback

The performance of the A.I. system must be monitored. The main objective is to reduce human

intervention in calibration and control of the detector while optimizing stability. The challenge

is in keeping the system as easy to interpret as possible. In developing a means to monitor the

performance of the A.I. system we would seek to analyze the system and the models that comprise it.

We would also aim to subject the models to synthesized data and understand the output produced.

3.6 Broader A.I. Program in Theoretical and Experimental Nuclear Physics

This research is the first step on the long road to “self-driving” facilities. These are experimental

facilities that would be self-calibrating and managed autonomously, e.g. facilities where the beam

is tuned and optimized based on the detector responses in real time.

One particular challenge that must be overcome, and which this proposed research will address,

is the sociological aspect of working alongside artificial intelligence. Much of the problem space

that A.I. addresses today was unfeasible just a few years ago. The detectors used for nuclear

and high energy physics experiments are often very complex and very expensive. Trusting the

operation of these detectors to artificial intelligence is, understandably, worrying at first glance. It

may be for this reason that such research has never been performed before. It is the opinion of the

proponents of this research proposal that the time is right to explore the possibilities of operating

and calibrating these detectors with artificial intelligence. Deep learning and hardware capabilities

have enabled A.I. to tackle ever increasingly complex challenges. As such, this research may have

not been possible even 5 years ago. It will take time for researchers to grow comfortable working

with A.I. in this new way. It is therefore best to introduce these systems incrementally, outside of

the standard operational budget of the lab and target smaller, but no less complex, systems first.

Extended safe and successful operation of an A.I. system like that proposed here will lower the

sociological barriers to these types of programs and pave the way for increased adoption.

3.6.1 Other Opportunities for A.I. Driven Experiment Control

Modern detectors have numerous controls, such as high voltage, low voltage, readout thresholds,

trigger thresholds, coolant temperatures, etc. The performance of any one detector will depend

on some combination of these, and also on other factors that cannot be controlled easily such as

environmental conditions. These conditions can be monitored and used to adjust the detector

controls to obtain a more stable detector response. Here are two more examples that have been

identified where such a system could be beneficial.

Digitization crate fan speed A dependence of the electronic pedestal on the temperature has

been observed in some digitization electronics, for example, the 250MHz flash ADC modules

used for the Barrel Calorimeter detector[1] in the GlueX experiment. Pedestal shifts can cause

either increased hit rates leading to electronic noise that masks true hits, or missing small

amplitude hits that are no longer above threshold. It has been shown that controlling the

fan speed of the electronics crate was able to improve the stability of the pedestal. An A.I.

could be used to combine temperature, hit rate, and amplitude information to control the
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fan speed, pedestal offsets, and thresholds of the digitization electronics ensuring continually

stable performance.

PMT time sagging Photomultiplier Tubes (PMTs) often have a dependence of the gain on the

rate of signals they observe. This well-known effect[5], [3], which is due to the voltage “sag-

ging” as more current goes through the tube, is ameliorated, but not eliminated through the

use of active bases. These attempt to compensate for the higher currents by adjusting the HV

to stabilize the gain. What is really needed, however is to stabilize the timing. An A.I. could

be trained to use the existing HV, current, measured hit rate of the tube, and the measured

timing offset to adjust the HV and readout thresholds in such a way that the timing and hit

efficiency are simultaneously kept stable.

3.6.2 Delivering Better Beam to Experimental Halls

An ongoing project at Jefferson Lab leverages machine learning (ML) to automate cavity trip clas-

sification. Traditional methods are effective at identifying superconducting radiofrequency (SRF)

trip causes, but are labor intensive and generate results in an asynchronous fashion. Identifying and

correcting faults in real-time will have numerous benefits including improving the stability of the

SRF system, providing a more reliable and available accelerator, and extending the energy reach of

the accelerator. All of this equates to more beam on target for experimental halls thus producing

more/better physics results.

3.6.3 Connecting Theory to Experiment

The increasing volume and complexity both of the data arising from experiment, and of the compu-

tational and theoretical investigations of Quantum Chromodynamics, is demanding new methods

to describe the observed particles of nature, the nucleon and nuclei, in terms of the fundamental

quarks and gluons of which they are composed. The one-dimensional distribution of the quarks

and gluons in terms of their light-cone momentum fraction x is encoded in the unpolarized and

polarized Parton Distribution Functions (PDFs); they are important both to our fundamental un-

derstanding of the structure of hadrons, and to the interpretation of experiments at the energy

frontier, such as those at the LHC. More recently, new three-dimensional measures have emerged

that encapsulate both the longitudinal and transverse structure of hadrons: the Generalized Parton

Distributions (GPDs) describing their structure in terms of x and the transverse impact-parameter

space, and the Transverse-Momentum-Dependent Distributions (TMDs) describing their structure

in terms of x and transverse momentum space. Together, they can provide descriptions of nucleon

structure that elude the one-dimensional distributions, notably in revealing the role of the angular

momentum of the quarks and gluons. These new measures, and the prospect of constraining and

interpreting them both from experiment and through computation, have led to the new science of

Nuclear Femtography. It is in recognition of this opportunity that the Commonwealth of Virginia

has established the Center for Nuclear Femtography (CNF).

None of the PDFs, GPDs and TMDs is directly measurable in experiment, but they are related to

experimentally measurable cross sections, and therefore to extract them requires the solution of the
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inverse problem. The global-fitting community, focused on extracting the PDFs from the worldwide

experimental data, including in particular, those from Jefferson Lab, has historically addressed the

issue of incomplete data by assuming a functional form for the PDFs, motivated by our physical

understanding, thereby formulating the problem as one of optimization over a set of parameters.

However, there is an increasing realization that AI proves a powerful framework both to undertake

the numerically demanding effort that this requires, to tabulate the PDFs in as unbiased way as

possible, and to identify the need for more data and calculation. Thus machine-learning experts at

Old Dominion University and at Davidson College are collaborating with theorists at Jefferson Lab,

with the support of the CNF, to apply machine learning methods to develop a mapping between

experimental data and parametrizations that can rapidly see the impact of extant data, and can

identify the need for new data and computation.

As we move to the era of nuclear femtography facilitated by experimental data from the 12 GeV

upgrade and the future EIC, and the opportunities for ab initio computaton in the approach to

the exascale, the challenges are still greater. The GPDs and TMDs encoding the three-dimensional

structure are far more involved than the one-dimensional PDFs, the physical guidance as to their

behavior far less constrained, and the data will inevitably remain incomplete. Thus AI has an ever

more essential role in the experimental and theoretical campaign to reveal the structure of nucleons

and nuclei.

4 Timetable of Activities

Experience with the development of Hydra tells us that given the complex nature of the proposed

research, the inherent risk in operating a detector with artificial intelligence, and the need for

interpretability (an area of A.I. research with many open questions) this program requires three

years of work broken, roughly, into three major themes. Any shorter time given to the task would

risk producing models which may be over fit and unable to respond appropriately to unbefore seen

situations, uninterpretable and biased, producing output based on spurious correlations, and/or a

system overly specialized and unable to be generalized and unable to operate in situ. The first year

will be focused on data gathering and model development. Year 2 will focus on model development

and refinement. This leaves year 3 to focus on the deployment and integration of the system(s)

produced, culminating with a deployment of a system to calibrate and control the CDC detector or

the CLAS12 drift chambers. The primary activities are given in roughly chronological order below.

4.1 Orientation and Model Review ∼ 1 month

This will take place first. It will be the time in which Naomi Jarvis will spend one week at Jefferson

Laboratory directly working with and orienting the new hires on the GlueX CDC as well as the

specifics of control and calibrations. Similar information will be gathered for the CLAS12 DC.

It will also be a time for the identification of any models which may have potential for transfer

learning in part or whole.
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4.2 Analysis of Historical Data ∼ 1 to 2 months

This must take place early in the research project. Much of the data will be found in the Experi-

mental Physics and Industrial Control System (EPICS) archive, which stores a large number of the

variables in the experimental run. Other data will be mined from each of the CLAS12 and GlueX

Calibration and Control Databases. During this time data sources will be accessed and simple data

analyses will be performed. This will give the entire research team specific knowledge about the

detector systems and will give ways to effectively judge produced models.

4.3 Candidate Algorithm Selection ∼ 1 to 2 months

This must take place before work on the system can begin in earnest. The specific topology

and algorithm(s) used will need to be determined in the course of this research. It is unlikely

that a ‘one size fits all’ approach will yield desired results and thus by the end of this period

candidate algorithms and techniques should be found. Any additional data used by the chosen

technique(s) should also be identified. During the preceding Analysis of Historical Data period a

basic understanding of the data which, given the overall challenge, will evoke possible algorithms.

Given the coupled nature of this and the preceding section, 1 to 2 months should be ample.

4.4 Infrastructure Development ∼ 1 month

This period includes the production of any necessary data sets to be employed in training the

models. If expert labels need to be produced, they will be obtained during this time. The quantities

for judging the efficacy of the produced models will be identified. Any computing infrastructure,

including tool-kits such as Tensorflow and Keras, will be obtained. The choice of A.I. framework

will be based on the needs of the research team and industry developments in the intervening

period between the submission of this proposal and the start of work. The time allocated for this

is comparable to that which was required for Hydra.

4.5 Candidate Model Development ∼ 6 months

The remaining time during the first year will be wholly dedicated to the development of the can-

didate model(s). For any unsupervised learning, historical data will be used and presented to the

model as if it were live data. Supervised learning will take place in the usual fashion. These can-

didate models will be subjected to tests involving cosmic ray data to ensure that problems can be

diagnosed and addressed early. Hydra needed about 6 months of iteration and testing to build up

its system of candidate models. The early testing with cosmic data will be invaluable. At the end of

the first year, candidate models with potentially non-optimized hyperparameters will be produced.

4.6 Model Refinement ∼ 6 months

The candidate models produced should be refined and iterated on during this time. This may

involve selecting the best candidate model developed for a given task (or subtask). It may involve
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some fundamental changes to the data that the model uses to improve efficacy. The models from

this period will continue on to further hyper parameter optimization (HPO).

4.7 Hyper Parameter Optimization and Interpretability ∼ 6 months

This work includes optimization of the models to reduce inference times (the time it takes to pass

input data through the model), improvement of training methods to produce better generalized

models, and the fashioning of the entire system to be deployed. For each model produced, care

must be taken to ensure that, to the highest degree possible, the models are able to be interpreted,

i.e. in order to ensure the safe operation of the system, the research team must be able to test the

system’s operation in a bevy different situations and understand why the system behaves as it does.

This is an important and non-trivial part of A.I. development [2] and an active area of research in

the A.I. community. This activity is likely to blend with Candidate Model Development. In the

early stages of Hydra development, simple proof of concept models were developed utilizing chosen

algorithms. It took as much time proving out a candidate model and improving the training of the

model to make it suitable for deployment in the hall as it did to develop the candidate model.

4.8 Integration and Deployment ∼ 12 months

A system for maintenance and monitoring of the A.I. system will be developed and deployed to

ensure that the system adapts, or can be adapted, to drastic changes in experimental conditions

or detectors. It is often easy to train a model and run inference ad hoc. Ensuring that the system

can operate within the necessary time-frame (set by the problem being solved) given additional

operational overheads (e.g. communicating with the controls system) brings a whole host of new

challenges. For example, during the development of Hydra it was discovered that the first inference

of a model took considerably longer than subsequent inferences. This was due to the dynamic

loading of models and their necessary libraries, and it was corrected by developing a system to load

them in advance and force a single inference. The integration and deployment period will culminate

in the active deployment and use of a system to calibrate and control drift chambers in either the

CLAS12 or GlueX detectors, whichever appears most promising at the time.

5 Project Management Plan

This project will be carried out as a joint effort between Jefferson Lab and Carnegie Mellon Univer-

sity with Jefferson Laboratory serving as the primary base of operations. The project participants

will meet bi-weekly via video conference (or more often as needed) to review progress. Jarvis will

visit JLab at least once, the first visit being close to the start of the project.

The duties of the individuals will be:

David Lawrence (PI) Lawrence will spend 5% of his time on this project. The primary respon-

sibilities will be to oversee the project, ensure milestones are met, report on project progress,

and provide guidance where needed. The PI was a full time staff member in Hall-D for more
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than a decade and is familiar with the software and data systems there and will provide

support and expertise as needed for accessing the data.

Thomas Britton (Co-PI) Britton will spend 10% of his time on this project. He spent a 3 year

post-doc in Hall-D with the GlueX experiment. During this time he acted as online monitoring

coordinator. After these 3 years he became full staff in IT where he led development of Hydra,

an A.I. system for data quality monitoring. He will work directly with the hired post-doc and

computer/data scientist providing guidance on developing the A.I. system and integrating it

with the GlueX data acquisition workflow.

Naomi Jarvis (Co-PI) Jarvis will spend up to 10% of her time on this project. She spent the

last decade working on the construction, readout, monitoring and calibration of the CDC for

GlueX. Her role will be to develop limits for the A.I., provide technical expertise on the drift

chamber and feedback on the performance of the A.I.

Post-doc (to be hired for project) The post-doc will be an employee of Jefferson Lab paid with

funding from this project. The post-doc, in conjunction with the Computer/Data-scientist,

will perform much of the day-to-day work related to the project. These include:

• Gathering the relevant data and formatting it for use in a training system

• Coordinating with the computer/data scientist on the development of the A.I. system.

• Ensuring that the A.I. system respects physics constraints and, with the help of Naomi

Jarvis, testing the efficacy of any model produced to render valid physics results.

• Evaluation and communication of the results

Computer/Data-scientist (to be hired for project) The individual will be an employee of

Jefferson Laboratory funded through this project. They will work closely with the hired

postdoctoral fellow and the PI/Co-PIs of this proposal on much of the day-to-day work.

These responsibilities include:

• Developing appropriate models for the A.I. algorithm and training them

• Ensuring that models are well generalized and not over fit.

• Ensuring that models are interpretable

• Evaluation and communication of the results
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Appendix 1: Biographical Sketch(es)

David Lawrence Ph.D. (PI)

David Lawrence Ph.D.
Staff Scientist III, EPSCI Group Lead
Thomas Jefferson National Accelerator Facility, Newport News VA
e-mail: davidl@jlab.org phone: (757)269-5567

Education and Training:

Ph.D. in Physics, Arizona State University, 1998
Subfield: Experimental Subatomic Physics
Dissertation: Initial Tests of the pb Decay Detector
Advisor: Barry Ritchie

M.S. in Physics, Arizona State University, 1995

B.S. in Physics, University of Oklahoma, 1992

Research and Professional Experience

2020-present: Staff Scientist(SSIII 2020-present)
Experimental Physics Software and Computing Infrastructure Group Lead
Jefferson Lab, Newport News,Virginia

2005-present: Staff Scientist(SSI 2005-2009; SSII 2009-2020)
Jefferson Lab, Newport News,Virginia

2004-2005: Data Acquisition Physicist(SSI)
Jefferson Lab, Newport News, Virginia

2005-2014: Adjunct Professor of Physics
Christopher Newport University

2004-2007: Adjunct Assistant Professor, Experimental Nuclear Physics
University Massachusetts

2003-2004: Research Assistant Professor.
Experimental Nuclear Physics University Massachusetts
(stationed at Jefferson Lab Accelerator in Newport News, VA)

1998-2003: Senior Postdoctoral Research Associate
University of Massachusetts
(stationed at Jefferson Lab Accelerator in Newport News, VA)
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Publications: (https://orcid.org/0000-0003-0502-0847)

JANA2 Framework for Event Based and Triggerless Data Processing
David Lawrence, Amber Boehnlein, and Nathan Brei
2020 EPJ conference series (epjconf200650 in process)

Measurements of Meson Polarizabilies
D. Lawrence 2020 Proceedings of Science (vol 317 Feb)
doi:10.22323/1.317.0032
https://pos.sissa.it/317/032/

Measuring the charged pion polarizability in the γγ → π+π− reaction
D. Lawrence, R. Miskimen, E.S. Smith, A. Muskarenkov 2013 Proceedings of Science (vol 172 Jul)
doi:10.22323/1.172.0040
https://pos.sissa.it/172/040

The JANA Calibrations and Conditions Database API
D. Lawrence 2010 J. Phys.: Conf. Ser. 219 042011 (6pp)
doi:10.1088/1742-6596/219/4/042011
https://iopscience.iop.org/article/10.1088/1742-6596/219/4/042011

Multi-threaded event processing with JANA
D. Lawrence 2008 Proceedings of Science (Vol 070 Oct)
DOI: https://doi.org/10.22323/1.070.0062
https://pos.sissa.it/070/062

Multi-threaded event reconstruction with JANA
D. Lawrence 2008 J. Phys.: Conf. Ser. 119 042018 (6pp)
doi: 10.1088/1742-6596/119/4/042018
https://iopscience.iop.org/article/10.1088/1742-6596/119/4/042018

C++ Introspection and Object Persistency Through JIL
D. Lawrence, D. Abbott, V. Gyurjyan, E Jastrzembski, C. Timmer, E. Wolin, JLab Proceedings of
the Conference on Computing in High Energy and Nuclear Physics, CHEP06 (ISBN 0230630160)
(2006)

Synergistic Activities:

• SBIR Reviewer 2017-2019

• NERSC User’s Group Executive Committee 2019-present

• Co-organizer of JLab quarterly Machine Learning challenges 2019-present

• EIC Software Consortium/EIC Software Group 2017-present

• GlueX Collaboration Board member 2005-2006 and 2014-2017

• Organizer Parallelsim in Experimental Nuclear Physics workshop at Christopher Newport
University Jan. 2011
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Identification of Potential Conflicts of Interest or Bias in Selection of Reviewers

• Abbott, David - Jefferson Laboratory, CODA/DAQ

• Austregesilo, Alexander - Jefferson Laboratory, GlueX

• Britton, Thomas - Jefferson Laboratory, GlueX

• Brei, Nathan - Jefferson Laboratory, EPSCI

• Chudakov, Eugene - Jefferson Laboratory, GlueX

• Dalton, Mark - Jefferson Laboratory, GlueX

• Diefenthaler, Markus - Jefferson Laboratory, EIC

• Dobbs, Sean - Florida State University, GlueX

• Deur, Alexandre - Jefferson Laboratory, GlueX

• Furletov, Sergey - Jefferson Laboratory, GlueX

• Furletova, Yulia - Jefferson Laboratory, EIC

• Gasparian, Ashot - NC A&T, PrimEx

• Gavalian, Gagik - Jefferson Laboratory, CLAS12

• Gyurjyan, Vardan - Jefferson Laboratory, CODA/DAQ

• Ito, Mark - Jefferson Laboratory, GlueX

• Jarvis, Naomi - Carnegie Mellon University, GlueX

• Jones, Richard - University of Connecticut, GlueX

• Larin, Iliya - University of Massachusetts, Amherst, GlueX/CPP

• Lersch, Daniel - Florida State University, GlueX

• Meyer, Curtis - Carnegie Mellon University, GlueX

• Mestayer, Mac - Jefferson Laboratory, CLAS

• Miskimen, Rory - University of Massachusetts, Amherst, GlueX/CPP

• Pentchev, Lubomir - Jefferson Laboratory, GlueX

• Phelps, William - Christopher Newport University, GlueX/CLAS12

• Romanov, Dmitry - Jefferson Laboratory, GlueX/EIC

• Shepherd, Matthew - Indiana University, GlueX

• Smith, Elton - Jefferson Laboratory, GlueX

• Somov, Alexander - Jefferson Laboratory, GlueX

• Stevens, Justin - Jefferson Laboratory, GlueX

• Tennant, Christopher - Jefferson Laboratory, Accelerator

• Timmer, Carl - Jefferson Laboratory, CODA/DAQ

• Taylor, Simon - Jefferson Laboratory, GlueX

• Zihlmann, Benedikt - Jefferson Laboratory, GlueX
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Thomas Britton, Ph.D. (CO-PI)

Education and Training:

• Ph.D., Syracuse University, Experimental high energy physics (LHCb) Amplitude Analysis

of B → J/ψφK, 2016 - Advisor: Tomasz Skwarnicki

• B.A., Coe College, major : Physics, Mathematics minor : Computer Science, 2009

Research and Professional Experience:

• Staff Scientist I - Currently a Staff Scientist with the Experimental Physics Software and

Computing Infrastructure group in Scientific Computing at Jefferson Laboratory. Responsi-

bilities include the development of Hydra, the A.I data quality monitoring system, and the

support of MCwrapper, the automated platform for Monte Carlo production for GlueX.

• Postdoctoral Fellow - Between 2016 and 2019 was a postdoctoral in Hall-D at Jefferson

Laboratory. Responsibilities included online monitoring lead, which involved data quality

assurance when acquiring data and developing web pages to collate monitoring histograms.

During this time he was responsible for developing MCwrapper as the standard of GlueX

Monte Carlo production. He was also responsible for measuring the cross section of φ.

• Graduate Research Assistant - Between 2009 and 2016 was a graduate assistant with

the LHCb group at Syracuse University. He was responsible for carrying out an Amplitude

Analysis of B → J/ψφK. He was responsible for developing a laser test stand for testing

silicon detectors. Additionally, was responsible for wire bonding detectors for testing.

Publications:

• Hydra (https://github.com/JeffersonLab/Hydra) - Hydra is an A.I. system currently de-

ployed in Hall-D for the GlueX collaboration. Hydra augments shift crews by providing a fine

grained look at the quality of data by looking at detector occupancy, which shows most of the

underlying data quality problems. It integrates with the EPICS system, writing the state of

the detector for archiving.

• MCwrapper (https://github.com/JeffersonLab/gluex MCwrapper)- MCwrapper is the defini-

tive frame work for Monte Carlo production at GlueX. It is usable independently and also as

part of an automated system which take requests for simulation via a web app and automat-

ically tests, submits, and monitors jobs across different platforms. It was designed and built,

frontend and backend, by Thomas Britton and involves code written in python, cshell, bash,

HTML, CSS, php, JavaScript and utilizes a MySQL database.

Synergistic Activities

• Co-founder of the A.I. Lunch series at Jefferson Lab.

• Organizer of the quarterly machine learning challenges, which challenge participants to tackle

a problem with machine learning.
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• Organizer of the 2020 A.I hackathon which preceded the 2020 A.I. Workshop at Jefferson Lab

• Developing Hydra, an A.I. data quality monitoring system deployed in Hall-D.

• Facilitating the use of machine learning techniques at Jefferson Lab by bench marking systems

with Hydra and developing tools for wider machine learning adoption at the lab.

Potential Conflicts of Interest

• Artuso, Marina - Syracuse University, LHCb

• Austregesilo, Alexander - Jefferson Laboratory, GlueX

• Blusk, Steven - Syracuse University, LHCb

• Chudakov, Eugene - Jefferson Laboratory, GlueX

• Dalton, Mark - Jefferson Laboratory, GlueX

• Dobbs, Sean - Florida State University, GlueX

• Deur, Alexandre - Jefferson Laboratory, GlueX

• Furletov, Sergey - Jefferson Laboratory, GlueX

• Gui, Bin - The Ohio State University

• Ito, Mark - Jefferson Laboratory, GlueX

• Jarvis, Naomi - Carnegie Mellon University, GlueX

• Jurik, Nathan - University of Oxford, LHCb

• Lawrence, David - Jefferson Laboratory, GlueX

• Lersch, Daniel - Florida State University, GlueX

• Meyer, Curtis - Carnegie Mellon University, GlueX

• Mountain, Raymond - Syracuse University, LHCb

• Pentchev, Lubomir - Jefferson Laboratory, GlueX

• Phelps, William - Christopher NEwport University, GlueX/CLAS12

• Romanov, Dmitry - Jefferson Laboratory, GlueX/EIC

• Skwarnicki, Tomasz - Syracuse University, LHCb

• Smith, Elton - Jefferson Laboratory, GlueX

• Somov, Alexander - Jefferson Laboratory, GlueX

• Stevens, Justin - Jefferson Laboratory, GlueX

• Stone, Sheldon - Syracuse University, LHCb

• Taylor, Simon - Jefferson Laboratory, GlueX

• Wang, Jianchun - Institute of High Energy Physics

• Zihlmann, Benedikt - Jefferson Laboratory, GlueX
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Naomi Jarvis, DPhil (CO-PI)

Naomi Jarvis DPhil CPhys MInstP

Research Scientist

Department of Physics, Carnegie Mellon University, 5000 Forbes Ave, Pittsburgh, PA

15213

e-mail: nsj@cmu.edu

Education and Training

• D.Phil. in Experimental Nuclear Structure Physics, Breakup studies with 23Na, University of

York, UK, 1991

• B.Sc.(Hons) in Physics, University of Birmingham, UK, 1987

Research and Professional Experience

• 2020 Research Scientist

Carnegie Mellon University, Pittsburgh, PA

• 2013-2020 Research Associate

Carnegie Mellon University, Pittsburgh, PA

• 2009-2014 Postdoctoral Research Associate

Carnegie Mellon University, Pittsburgh, PA

• 2001-2008 Contractor to Health Protection Agency, UK

• 2003-2005 Contractor to ACJ & Associates, Richland, WA

• 1992-2001 Senior Scientific Officer, Biokinetic Modelling Group, National Radiological Pro-

tection Board, UK

Research Activities:

• 2010-2020 Project Scientist for GlueX CDC construction, commissioning and operations

Developed algorithms for readout firmware. Responsible for CDC calibrations, data correc-

tions and monitoring guidance.

• 1992-2008 Internal dosimetry research, software development and guidance

Developed, published and supported biokinetic modelling and internal dosimetry software.

Participated in international intercomparison exercises in internal dosimetry.
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Significant Publications

• Jarvis, N.S., Meyer, C.A., Zihlmann, B., Staib, M., Austregesilo, A., Barbosa, F., Dickover,

C., Razmyslovich, V., Taylor, S., and Van Haarlem, Y., Visser, G. and Whitlatch, T. The

Central Drift Chamber for GlueX NIM A 962 163727 (2020)

• Lawrence, D., Dickover, C., Jarvis, N., Pentchev, L., Zihlmann, B. FADC125 Operation and

Data Format Requirement. Technical Report GlueX-doc-2274, Jefferson Lab, June 2014.

• Jarvis, N.S., Watson, D.L., Gyapong, G.J., Jones, C.D., Bennett, S.J., Freer, M., Fulton,

B.R., Karban, O., Murgatroyd, J.T., Tungate, G., Rae, W.D.M., and Smith, A.E. Breakup

studies with 23Na Phys. Rev. C 51 2606 (1995).

Synergistic Activities

• GlueX Collaboration, 2010-present

• CDC calibrations, monitoring software development and guidance.

Identification of Potential Conflicts of Interest or Bias in Selection of Reviewers

• Austregesilo, Alexander - Jefferson Laboratory, GlueX

• Britton, Thomas - Jefferson Laboratory, GlueX

• Cornejo, Juan Carlos - Carnegie Mellon University

• Dalton, Mark - Jefferson Laboratory, GlueX

• Dickover, Cody - Jefferson Laboratory, GlueX

• Dobbs, Sean - Florida State University, GlueX

• Lawrence, David - Jefferson Laboratory, GlueX

• Meyer, Curtis - Carnegie Mellon University, GlueX

• Pentchev, Lubomir - Jefferson Laboratory, GlueX

• Quinn, Brian - Carnegie Mellon University

• Schumacher, Reinhard - Carnegie Mellon University, GlueX

• Visser, Gerard - Indiana University

• Taylor, Simon - Jefferson Laboratory, GlueX

• Zihlmann, Benedikt - Jefferson Laboratory, GlueX
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Appendix 2: Current and Pending Support

David Lawrence, Ph.D. (PI)

David Lawrence is a Staff Scientist in Jefferson Laboratory’s Experimental Physics Software and

Computing Infrastructure Group, under Scientific Computing, and is supported by DOE contract

DE-AC05-06OR23177, under which Jefferson Science Associates, LLC, operates the Thomas Jef-

ferson National Accelerator Facility. He is obligated to spend 20% of his time (2.4 person-months)

on Jefferson Laboratory’s LDRD 2013 project “Development of Next Generation Parallel Event

Processing Framework” until it completes at the end of FY20. The award for this project in FY20

was $180k for work to be performed over a 1 year period starting Oct. 1st, 2019. The project

involves writing JANA, a multi-threaded software framework for experimental particle physics data

processing using C++. There is no direct overlap with the research for the current proposal. The

JANA framework will be used for the reconstruction of experimental data for the GlueX experi-

ment which will be fed into the AI models. The data reconstruction will be done independent of

the current proposal and neither activity depends on the other.

Thomas Britton, Ph.D. (CO-PI)

Thomas Britton is a Staff Scientist in Jefferson Laboratory’s Experimental Physics Software and

Computing Infrastructure Group, under Scientific Computing, and is 100% supported by DOE con-

tract DE-AC05-06OR23177, under which Jefferson Science Associates, LLC, operates the Thomas

Jefferson National Accelerator Facility.

Naomi Jarvis, DPhil (CO-PI)

Naomi Jarvis is a Research Scientist in Carnegie Mellon University’s Nuclear Physics group, which

is supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics, DOE

Grant No. DE-FG02-87ER40315.
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Appendix 4: Facilities and Other Resources

The proposed research will take place primarily at Jefferson Laboratory with staff stationed at the

laboratory and solely utilize the facilities of Jefferson Laboratory. The CO-PI Jarvis will work

primarily at her home institution, Carnegie Mellon University with the exception of brief periods of

travel to Jefferson Lab to collaborate on this project. All members of the research team currently

have or will have access to a portion of the computational resources of the IT division of the

laboratory. These resources include:

• 3 dedicated machine learning nodes each with 4 Titan RTX GPUs.

• The equivalent of 7000 cores of AMD Rome.

• Nearly 10PB of online disk storage.

• A tape library capable of over 100PB of storage.

The fraction of the listed resources needed for this project are modest (<1%) and will not disrupt

current operations at the lab. For the needs of the proposed research the research team will have

ready access to the dedicated machine learning nodes, ample CPU compute power, and sufficient

storage (several TeraBytes at most).

Additionally, the research team will have access to the existing calibration and conditions

databases of both Hall-B and Hall-D for the purposes of this project. Access to Hall-B and Hall-D

where the detectors and control systems are housed will be available if needed. The systems can

be controlled remotely so physical access will not be strictly required.

Appendix 5: Equipment

The equipment needs for this research are modest given that the primary focus is in the production

of software. Office equipment and desktop/laptop computers are provided by each team members’

home institution. The exception being personal computers for the new hires which will be purchased

using funds from this proposal.
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Appendix 6: Data Management Plan

The proposed research will take place and thus any data management plan will conform to that of

Jefferson Lab [7].

Data Types and Sources

The data used by this research will come directly from, or be derived from, quantities stored in the

EPICS archive system at Jefferson Lab and the respective calibrations and conditions databases of

the CLAS12 and GlueX experiments. These include values read from sensors in and around the

CLAS12 DC and GlueX CDC detectors and their respective electronics. These also include derived

values representing calibration constants used in the processing of raw data. The trained models

will nominally be stored in HDF5 (Hierarchical Data Format), along with any meta data required

for loading or interacting with the model (e.g. the version numbers of any used packages). These

records, the models and their metadata, will be permanently archived on magnetic tape at Jefferson

Lab and a copy made accessible to the public upon request.

Content and Format

This research has no need for any personally identifiable information (PII), nor does it have the need

for any sensitive information related to national security interests or any other interests outside of

the advancement of the scientific objectives of the Department of Energy (DOE). Any data gathered

or produced in the course of this research will thus be stored in an unencrypted, human readable

(where appropriate), format suitable for the training and/or testing of the models produced in the

course of this research.

Any codes developed during this research will be version controlled by and stored on github.com.

Upon completion of the research the code will be made open source and released, with suitable

documentation to the public. In this way future projects may benefit from the models and code

developed in pursuit of the proposed research.

Data Sharing and Preservation

Believing that the sharing of data fosters innovation and advancement all data used in the course of

this research will be made public. Produced codes will be preserved in an open github repository.

Any models produced along with their metadata will be permanently archived on magnetic tape

at Jefferson Lab. Items stored as “production” in the archive are automatically copied to a second

backup tape that is stored in a protected vault ensuring preservation in the event of catastrophe.

Data in Publications

Datasets used in publications will have clearly identifiable tags that can be used to retrieve them

from the JLab permanent tape archive. The archive is not directly publicly accessible, but is

available to all JLab users. Datasets whose size is not too large that they can be reasonably posted

to the web will be. Otherwise, the datasets will be made available upon request.
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Data Storage Requirements

Permanent data storage will use the existing JLab tape archive. Much of the initial input data

needed for this project will be mined from existing tape archives, MySQL databases, and EPICS

archive servers. All of these have redundant backup systems already in place at Jefferson Lab. The

mined data which will be modest in size compared to the large experimental datasets, will also be

stored in the tape archive. In addition, trained models will be stored along side their meta data

permanently on the Jefferson Lab tape archive.

5.1 Intellectual Property

Allocation of Intellectual Property rights will be in accordance with Jefferson Science Associates’

(JSA’s) Prime Contract with the U.S. Department of Energy or under a separate Cooperative

Research and Development Agreement (CRADA) between the Participants.

Appendix 7: Letters of Commitment from co-PIs and Collab-

orators
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Mac Mestayer  

Senior Staff Physicist  

Physics Division, Jlab  

Funding Opportunity Committee  

Dear Committee Members;  

I am writing to support the proposal, “A.I. Assisted Experiment Control and Calibration”, 
submitted to you by David Lawrence, Thomas Britton, Naomi Jarvis and David Richards. 
This is a well-founded and exciting proposal with the potential to improve the quality and 
consistency of our experimental data and speed up the publication of physics results.  

I have designed, built, operated, monitored and calibrated the drift chambers used in Hall 
B and know that the calibration step is complicated and time-consuming. The process of 
turning raw data (TDC signals) into a reliable space point on a particle trajectory is 
complicated because it involves so many variables. We rely on the experience of subject 
matter experts to identify which variables are most important to monitor and include in 
our models. Still, there are unidentified factors which influence our calibrations in 
unknown ways. AI can help to find these hidden correlations. The result would be more 
reliable calibrations done in a shorter time.  

Of course, any particular correlation (for example, chamber gain’s dependence on 
atmospheric pressure) can be studied “by hand”, but I can say from experience that there 
is always that one variable which was not identified as being important. I can also say 
that my colleagues who want to do high-level physics analysis with our data are always 
impatient about any delays in calibration.  

Just as important as the ultimate quality of the calibrations is their consistency. A self-
consistent calibration is essential for a reliable simulation of the data. Here especially, AI 
can assist us in finding the underlying causes of calibration changes. Once identified, we 
can deal with them. It’s a truism in physics that the most interesting findings were 
unexpected, and I expect the same from the results of this pilot project. It is certainly 
worthwhile to support it.  

Sincerely,  

Mac Mestayer  

 



 

 

 
	 	
	 	 													April	22	,	2020	

	
	
Dr David Lawrence 
Staff Scientist III, EPSCI Group Lead 
Thomas Jefferson National Accelerator Facility 
 
 
Subject: Organizational Letter of Commitment, Funding Opportunity Number (FOA) LAB 

20-2261 
 
Dear Dr Lawrence,  
 
This letter serves as an organizational letter of commitment for Carnegie Mellon University as a 
collaborator in the proposal to the U.S. Department of Energy (DOE), LAB 20-2261, entitled “A.I. 
Assisted Experiment Control and Calibration” being led by Thomas Jefferson National Accelerator 
Facility (Jefferson Lab.). 
 
If this proposal is awarded, Carnegie Mellon University intends to collaborate as detailed in the 
proposal and will fully comply with the terms of the FOA and applicable DOE requirements. Key 
personnel participating from Carnegie Mellon University is Naomi Jarvis, as co-P.I. The 
participation of Carnegie Mellon University is free of organizational conflicts of interest.  
 
 
Sincerely,   
	

																																																		
	
Curtis	A.	Meyer	
Associate	Dean	for	Research	
	
	 		

 

Curtis A. Meyer 
The Otto Stern Professor of Physics 
Associate Dean for Research 
Carnegie Mellon University 
Pittsburgh, PA 15213-3890 
(412) 268-2745     
cmeyer@cmu.edu 



David Lawrence 
Jefferson Lab 
12000 Jefferson Avenue 
Newport News, VA 23606 
 
SUBJECT: Letter of Individual Commitment in Support of Jefferson Lab’s Application to the FOA LAB 
20-2261, 'A.I. Assisted Experiment Control and Calibration'  
 
 
Dear Dr. Lawrence, 
 
This letter confirms my commitment to fully support and participate in the execution of the 
Proposal 'A.I. Assisted Experiment Control and Calibration', FOA LAB 20-2261 if awarded funding by 
the Department of Energy. 
 
I will be the Co-PI for the Carnegie Mellon contributions. My role will be to develop limits for the A.I., 
provide technical expertise in the use of the GlueX Central Drift Chamber and feedback on the 
performance of the A.I. My commitment will involve 10 percent of my time and effort. As one of the 
detector experts for this drift chamber, I am very motivated to improve its performance wherever 
possible.  Calibrations are a time-consuming part of my work and the success of this project would make 
those substantially less onerous.  
 
 
 
Sincerely, 
 
 
 
 
 
 
 
Dr Naomi S Jarvis 
Research Scientist 
Department of Physics 
Carnegie Mellon University 
412 268 6949 
nsj@cmu.edu 
 


