

Studying nuclear pdfs in the super-fast quark regime: New insight into the EMC effect

John Arrington, Lawrence Berkeley Lab 22 GeV open discussion; Jefferson Lab, Oct 7 2024

EMC effect

EMC collab measured Fe/D cross section ratios in DIS regime; found strong suppression of nuclear pdfs in valence region → Significant suppression of high-x quark distribution in Fe

JLab E03-103 measured EMC effect for ^{3,4}He, ⁹Be, ¹²C Consistent shape for all nuclei (curve is SLAC ¹²C fit)

We quantify the EMC effect using the slope in the linear region (0.35<x<0.7)

10/4/2024

EMC effect

Conventional binding/smearing can explain up to half of the effect in some models. Has much smaller impact in light-front calculations

Several more exotic explanations proposed; many can explain the conventional EMC effect, but may be excluded by other observables

Insight from the Jefferson Lab program:

Light nuclei measurements led to examining more detailed nuclear structure

EMC effect

Conventional binding/smearing can explain up to half of the effect in some models. Has much smaller impact in light-front calculations

Several more exotic explanations proposed; many can explain the conventional EMC effect, but may be excluded by other observables

Insight from the Jefferson Lab program:

Light nuclei measurements led to examining more detailed nuclear structure

Demonstrated non-trivial EMC-SRC correlation – often explained in terms of Local-Density or High-Virtuality effects

New Inclusive (12 GeV): A and N/Z dependence, flavor-dependence, spin dependence can provide tests of various models

'Tagged' measurements are latest observable, provide new information but have limitations and model dependence in the interpretation

"EMC effect" at x>1, i.e. SFQ distributions, provides entirely new test; **needs higher energy for clean interpretation**

10/4/2024

In a simple convolution model, the super-fast quarks are associated 0.10 with high-x quarks in high-momentum nucleons

- Both the pdf and the nucleon momentum distribution fall rapidly 0.05 at large momenta
- SFQ distribution falls rapidly at large x values (esp. for deuteron)

If conventional SFQ contribution is small, certain effects may be much easier to see

 An additive non-hadronic contribution may stand out where pdfs are small

Off-shell effects associated with very high-momentum nucleons will be amplified as x>1 selects higher momentum nucleons

10/7/2024

- In a simple convolution model, the super-fast quarks are associated with high-x quarks in high-momentum nucleons
 - Falls rapidly at large x values (esp. for deuteron)
- Six-quark bag was potential explanation for the EMC effect
 - Two interacting 3q bags ≠ one 6q bag
 - Small impact EMC region, much larger in SFQ region

- In a simple convolution model, the super-fast quarks are associated with high-x quarks in high-momentum nucleons
 - Falls rapidly at large x values (esp. for deuteron) 0
- Six-quark bag was potential explanation for the EMC effect
 - Two interacting 3g bags \neq one 6g bag 0
 - Small impact EMC region, much larger in SFQ region 0
- Momentum sharing more important at largest quark momenta
 - Dramatic enhancement (potentially order of magnitude) 0 over taking highest-x quarks in highest-momentum nucleons
- Similar for any mechanism that allows direct momentum sharing, while off-shell effects and other models suggest suppressed pdfs

10/4/2024

- In a simple convolution model, the super-fast quarks are associated with high-x quarks in high-momentum nucleons
 - Falls rapidly at large x values (esp. for deuteron)
- Six-quark bag was potential explanation for the EMC effect
 - Two interacting 3q bags ≠ one 6q bag
 - Small impact EMC region, much larger in SFQ region
- Momentum sharing more important at largest quark momenta
 - Dramatic enhancement (potentially order of magnitude) over taking highest-x quarks in highest-momentum nucleons
- Similar for any mechanism that allows direct momentum sharing, while off-shell effects and other models suggest suppressed pdfs

D. Kim and G. Miller, PRC 109 (2024) 045203 8

Other models for super-fast quarks

- Nucleon overlap/quark momentum sharing predict significant enhancement in the nuclear pdfs at x>1 (100-1000% enhancements)
- Various other models (color screening, PLC suppression, rescaling, offshell) can yield significant suppression in this region (factors of 2ish)

Kinematic projection

Kinematic coverage for 6, 11, and 22 GeV from the 22 GeV White Paper

• Blue (red) shows 10 (1) counts/hour: 50uA on 2% ¹²C target

Factor ~4 improvement in Q² coverage

Better to look at coverage in ξ and Q^2

- Nachtmann ξ is 'improved' version of x for finite Q^2 values
- x=1.4 gives $\xi \approx 1.2/1.3/1.35$ for 6/11/22 GeV

Theory input needed

Calculations of SFQ distributions for the deuteron based on 'conventional' effects

• Determine uncertainty in the 'baseline' distributions

Evaluate models of the EMC effect in a consistent fashion

• Some calculations exist, some have been evaluated for tagged DIS but not inclusive

Examine A-dependence, Q^2 dependence

• Should be straightforward, but no systematic evaluations

Define scaling ration?

- Not well defined, but there are relatively straightforward ways to estimate and evaluate whether or not data behave like DIS
- 22 GeV is absolutely critical here.

Key experimental issue is ensuring DIS to constrain pdfs

6 GeV data show *partonic-like scaling behavior* for x>1, despite being dominated by quasi-elastic

12 GeV experiment doubles JLab Q² range largely inelastic, but mainly resonance region (~10% QE):
detailed, quantitative evaluation of scaling at large x/ξ

22 GeV: Dominated by DIS, small resonance and negligible QE contributions – **reliable pdf constraints**

10/4/2024

22 GeV Open Discussion, Oct 7, 2024

12

10/4/2024

Challenges to interpreting SFQ distributions

Challenges to interpreting SFQ distributions

10/4/2024

22 GeV Open Discussion, Oct 7, 2024

16

22 GeV

- 6 GeV data, Q²<8 GeV²: QE dominated, looks ("by eye") consistent with scaling
- 11 GeV, Q²<16 GeV² : DIS comparable to resonance region; QE small
 - Not a precise measurement of pdfs; expect modest scaling violations (which can be measured)
 - Could be very compelling if very large deviations observed
- 22 GeV, Q² ≈ 36 GeV²
 - Much smaller resonance contributions
 - Better check of scaling (Q² dependence)
 - Push to higher x at 'lower' Q² larger predicted effects
 - Real A dependence studies possible

Plot (Sargsian) illustrates small QE contribution Need to update Resonance vs DIS estimate

Where do we go from here?

- Short-term:
 - Compare baseline convolution calculations, including TMC, HT effects
 - Extract the inclusive x>1 structure function from various models vs x, Q²
 - Map out kinematic coverage, experimental needs for 22 GeV experiment
- 11 GeV: First test in compare of deuteron data to calculations
 - Try to quantify how well F₂ connects to pdfs at these kinematics
 - Look for potentially large increase (suppression) over baseline convolution
 - If observe large effect (relative to uncertainties associated with limit Q²), look at A-dependence: 2H, 4He, 12C, 40Ca to see if it scales as predicted
- 22 GeV or EIC:
 - Cleaner measurement at much higher Q²
 - JLab 22: Extend x range, where several models show rapid variation
 - EIC: Significantly higher Q² values
 - Examine Q² dependence test/constrain HT contributions 10/4/2024 22 GeV Open Discussion, Oct 7, 2024