Impact of High x JLab Data on Transversity PDFs and Tensor Charges

Christopher Cocuzza

www.jlab.org/theory/jam

December 2, 2024

- TMD Extraction Results
 DiFF Extraction Results
 Impact of Jefferson Lab Data
- 5. Conclusions and Outlook

Approaches to Extract Transversity

Dihadron Frag.

- Radici + Bacchetta (RB18)
- Benel + Courtoy + Ferro-Hernandez (2020)

M. Radici and A. Bacchetta, Phys. Rev. Lett. **120**, no. 19, 192001 (2018) TMD + Collinear Twist-3

• JAM3D

L. Gamberg et al., Phys. Rev. D 106, no. 3, 034014 (2022)

Lattice QCD

- ETMC Collaboration
- PNDME Collaboration
- LHPC Collaboration

C. Alexandrou et al., Phys. Rev. D 104, no. 5, 054503 (2021)

Tensor Charges

 $\delta u \equiv \int_0^1 \mathrm{d}x (h_1^u - h_1^{\bar{u}}),$ $\delta d \equiv \int_0^1 \mathrm{d}x (h_1^d - h_1^{\bar{d}}),$

 $q_T \equiv \delta u - \delta d$,

Herczeg (2001); Erler, Ramsey-Musolf (2005); Pospelov, Ritz (2005); Severijns, et al. (2006); Cirigliano, et al. (2013); Courtoy, et al. (2015); Yamanaka, et al. (2017); Liu, et al. (2018); Gonzalez-Alonso, et al. (2019)

Figure taken from D. Pitonyak

QCD Pheno for Transversity

Tensor Charges

Low-Energy **BSM** Physics

Lattice QCD, Models

Anselmino, *et al.* (2007, 2009, 2013, 2015); Goldstein, et al. (2014); Kang, et al. (2016); D'Alesio, et al. (2020); Cammarota, et al. (2020); Gamberg, et al. (2022)

> Radici, et al. (2013, 2015, 2018); Benel, *et al.* (2020); Cocuzza, et al. (2023)

> > He, Ji (1995); Barone, et al. (1997); Schweitzer, et al. (2001); Gamberg, Goldstein (2001); Pasquini, et al. (2005); Wakamatsu (2007); Lorce (2009); Gupta, et al. (2018); Yamanaka, et al. (2018); Hasan, et al. (2019); Alexandrou, et al. (2019, 2023) Yamanaka, *et al.* (2013); Pitschmann, et al. (2015); Xu, *et al.* (2015); Wang, *et al.* (2018); Liu, *et al.* (2019)

The Transverse Spin Puzzle?

Introduction TMD Extraction Results

3. DiFF Extraction Results

4. Impact of Jefferson Lab Data

5. Conclusions and Outlook

Updated QCD global analysis of single transverse-spin asymmetries: Extracting H, and the role of the Soffer bound and lattice QCD

Jefferson Lab Angular Momentum (JAM) and Jefferson Lab Angular Momentum Collaborations • Leonard Gamberg (Penn State U., Berks-Lehigh Valley) Show All(6)

May 2, 2022

27 pages

Published in: Phys.Rev.D 106 (2022) 3, 034014

JAM3D Data

SIA	BaBar, Belle, BESIII	176 points
SIDIS (p, D)	COMPASS, HERMES	368 points
Drell-Yan	COMPASS	12 points
W/Z Production	STAR	17 points
AN	STAR	60 points

JAM3D Functions

10

JAM3D PDFs

Fit was done with and without LQCD data included

JAM3D Tensor Charges

Showed compatibility between TMD data and LQCD calculations

JAMDiFF Data

JAMDiFF PDFs

JAM3D* = JAM3D-22 (no LQCD) + Antiquarks w/ $\bar{u} = -\bar{d}$ + small-*x* constraint (see slide 23)

Agreement between all three analyses within errors

Soffer Bound:
$$|h_1^q| < \frac{1}{2} [f_1^q + g_1^q]$$

J. Soffer, Phys. Rev. Lett. 74, 1292-1294 (1995)

Measured Region

Controlling Extrapolation

Y. V. Kovchegov and M. D. Sievert, Phys. Rev. D 99, 054033 (2019)

 $h_1^q \xrightarrow[r \to 0]{} x^{\alpha_q} \qquad \alpha_q = 1 - 2\sqrt{\frac{\alpha_s N_c}{2\pi}} \approx 0.17 \pm 0.085$

JAMDiFF Tensor Charges

Consistent with RB18 and JAM3D* (no LQCD). What happens if we include LQCD in the fit?

Transversity PDFs (w/ LQCD)

JAM3D* = JAM3D-22 (w/ LQCD) + Antiquarks w/ $\bar{u} = -\bar{d}$ + small-*x* constraint (see slide 23) + δu , δd from ETMC & PNDME (instead of g_T from ETMC)

JAMDiFF (w/ LQCD) and JAM3D* (w/ LQCD) largely agree

Tensor Charges (w/ LQCD)

Electron-Ion Collider impact study on the tensor charge of the nucleon

Leonard Gamberg (Penn State U., Berks-Lehigh Valley), Zhong-Bo Kang (UCLA), Daniel Pitonyak (Lebanon Valley Coll.), Alexei Prokudin (Jefferson Lab), Nobuo Sato (Jefferson Lab) Show All(6) Jan 15, 2021

19

12 pages

Published in: Phys.Lett.B 816 (2021) 136255

JAM Pseudo-Data Approach

JAM3D Impact (SoLID)

21

SoLID data is for helium (neutron) target, covers 0.1 < x < 0.6

JAM3D Impact (SoLID)

SoLID provides strong constraints on up and down PDFs Greatly reduces errors on tensor charges

PRELIMINARY JAMDiFF Impact Study

Thanks to **Yorgo Sawaya** for running impact analysis in JAMDiFF framework

Thanks to Matthew McEneaney for producing pseudo-data

JAMDiFF Impact (SoLID)

SoLID data is for helium (neutron), sensitive mostly to down quark transversity PDF

Note that all pseudodata is generated using the (no LQCD) result of JAMDiFF!

JAMDiFF Impact (SoLID)

25

SoLID provides very strong experimental constraints on the down quark!

JAMDiFF Impact (CLAS12 proton)

JAMDiFF Impact (CLAS22 proton)

JAMDiFF Impact (CLAS proton) CLAS12

28

x	Q2	S	Z	Mh	У	x	Q2	S	Z	Mh	У
0.113	1.61	20.8	0.429	0.724	0.715	0.116	3.43	42.2	0.352	0.806	0.716
0.145	1.86	20.8	0.457	0.686	0.644	0.146	4.06	42.2	0.383	0.811	0.673
0.171	2.11	20.8	0.462	0.668	0.619	0.172	4.57	42.2	0.396	0.781	0.643
0.198	2.33	20.8	0.482	0.668	0.591	0.197	4.94	42.2	0.411	0.783	0.607
0.226	2.62	20.8	0.49	0.673	0.582	0.227	5.41	42.2	0.42	0.764	0.577
0.263	2.98	20.8	0.479	0.6	0.569	0.262	5.76	42.2	0.423	0.719	0.532
0.309	3.32	20.8	0.488	0.58	0.539	0.309	6.6	42.2	0.441	0.701	0.517
0.385	4.15	20.8	0.465	0.546	0.541	0.39	7.81	42.2	0.465	0.67	0.485
0.509	5.77	20.8	0.42	0.486	0.569	0.526	9.62	42.2	0.472	0.561	0.443

Similar *x* coverage, but CLAS22 has Q^2 (and thus W^2) about twice as large

JAM Methodology Extraction of DiFFs Extraction of Transversity PDFs Extraction of Tensor Charges Conclusions and Outlook

Conclusions and Outlook

SoLID neutron data would provide strongest experimental constraints on down quark

CLAS22/CLAS12 could solve the transverse spin puzzle for δu !

Collaboration

Andreas Metz

Nobuo Sato

Daniel Pitonyak

Alexey Prokudin

Yorgo Sawaya

Ralf Seidl

Thank you to Yiyu Zhou and Patrick Barry for helpful discussions

Extra Slides

JAM Collaboration

- 3-dimensional structure of nucleons:
- Parton distribution functions (PDFs)
- Fragmentation functions (FFs)
- Transverse momentum dependent distributions (TMDs)
- Generalized parton distributions (GPDs)

- Collinear factorization in perturbative QCD
- Simultaneous determinations of PDFs, FFs, etc.
- Monte Carlo methods for Bayesian inference

JAM Global Analysis in the collinear DiFF Approach

R. Seidl et al., Phys. Rev. D 96, no. 3, 032005 (2017)

C. Adolph et al., Phys. Lett. B 713, 10-16 (2012)

L. Adamczyk et al., Phys. Rev. Lett. 115, 242501 (2015)

Observables for DiFFs

SIA Artru-Collins Asymmetry

A. Vossen et al., Phys. Rev. Lett. 107, 072004 (2011)

$$\frac{d\sigma}{dz \, dM_h} = \frac{4\pi \alpha_{\rm em}^2}{s} \sum_q e_q^2 D_1^q(z, M_h) \qquad A^{e^+e^-}(z, M_h, \bar{z}, \overline{M}_h) = \frac{\sin^2 \theta \sum_q e_q^2 H_1^{\triangleleft, q}(z, M_h) H_1^{\triangleleft, \bar{q}}(\bar{z}, \overline{M}_h)}{(1 + \cos^2 \theta) \sum_q e_q^2 D_1^q(z, M_h) D_1^{\bar{q}}(\bar{z}, \overline{M}_h)}$$

36

Data for DiFFs

SIA cross section	Belle	1094 points
SIA Artru-Collins	Belle	183 points

$$\pi^+\pi^-$$
 DiFFs

$$D_1^u = D_1^d = D_1^{\bar{u}} = D_1^{\bar{d}},$$
$$D_1^s = D_1^{\bar{s}}, \quad D_1^c = D_1^{\bar{c}}, \quad D_1^b = D_1^{\bar{b}},$$
$$5 \text{ independent functions } (w/D_1^g)$$
$$[supplement with PYTHIA data]$$

$$\begin{split} H_{1}^{\triangleleft,u} &= -H_{1}^{\triangleleft,d} = -H_{1}^{\triangleleft,\bar{u}} = H_{1}^{\triangleleft,\bar{d}}, \\ H_{1}^{\triangleleft,s} &= -H_{1}^{\triangleleft,\bar{s}} = H_{1}^{\triangleleft,c} = -H_{1}^{\triangleleft,\bar{c}} = 0, \\ & 1 \text{ independent function} \end{split}$$

A. Courtoy et al., Phys. Rev. D 85, 114023 (2012)

Quality of Fit (Unpolarized Cross Section)

37

R. Seidl et al., Phys. Rev. D 96, 032005 (2017)

Phys. Rev. D 67, 094002 (2003)

Extracted DiFFs

Extracted DiFFs (3D)

Extracted IFFs

 $\frac{\text{Bound:}}{|H_1^{\triangleleft,q}| < D_1^q}$

A. Bacchetta and M. Radici, Phys. Rev. D **67**, 094002 (2003)

Conclusions and Outlook

Comprehensive Analysis of DiFFs and Transversity

First simultaneous analysis of DiFFs and transversity PDFs

First inclusion of

Observables for Transversity PDFs

SIDIS asymmetry (*p* and *D*)

$$R = \sum_{k=1}^{N} \sum_{i=1}^{N} \sum_{j=1}^{N} \sum_{i=1}^{N} \sum_{i=1}^{N} \sum_{i=1}^{N} \sum_{j=1}^{N} \sum_{i=1}^{N} \sum_{i=1}^{N} \sum_{i=1}^{N}$$

$$A_{UT}^{\text{SIDIS}} = c(y) \frac{\sum_{q} e_q^2 h_1^q(x) H_1^{\triangleleft,q}(z, M_h)}{\sum_{q} e_q^2 f_1^q(x) D_1^q(z, M_h)}$$

43

C. Adolph et al., Phys. Lett. B 713, 10-16 (2012)

 $A_{UT}^{pp} = \frac{\mathscr{H}(M_h, P_{hT}, \eta)}{\mathscr{D}(M_h, P_{hT}, \eta)}$

L. Adamczyk et al., Phys. Rev. Lett. 115, 242501 (2015)

$$\mathscr{H}(M_{h}, P_{hT}, \eta) = 2P_{hT} \sum_{i} \sum_{a,b,c} \int_{x_{a}^{\min}}^{1} \mathrm{d}x_{a} \int_{x_{b}^{\min}}^{1} \frac{\mathrm{d}x_{b}}{z} f_{1}^{a}(x_{a}) \frac{h_{1}^{b}(x_{b})}{\mathrm{d}\hat{t}} \frac{\mathrm{d}\Delta\hat{\sigma}_{ab^{\uparrow}\to c^{\uparrow}d}}{\mathrm{d}\hat{t}} H_{1}^{\triangleleft,c}(z, M_{h})$$
$$\mathscr{D}(M_{h}, P_{hT}, \eta) = 2P_{hT} \sum_{i} \sum_{a,b,c} \int_{x_{a}^{\min}}^{1} \mathrm{d}x_{a} \int_{x_{b}^{\min}}^{1} \frac{\mathrm{d}x_{b}}{z} f_{1}^{a}(x_{a}) f_{1}^{b}(x_{b}) \frac{\mathrm{d}\hat{\sigma}_{ab\to cd}}{\mathrm{d}\hat{t}} D_{1}^{c}(z, M_{h})$$

Conclusions and Outlook

Conclusions

Simultaneous extraction of DiFFs and transversity PDFs

Universality of all available information on transversity

Conclusions and Outlook

Outlook

More data from RHIC Proton-proton cross section

SIDIS multiplicities from COMPASS

N. Makke, Phys. Part. Nucl. 45, 138-140 (2014)

L. Gamberg et al., Phys. Lett. B 816, 136255 (2021)

45

EIC can provide new information

Simultaneous fit of DiFF channel + TMD channel + Lattice QCD

Extracted IFFs (3D)

Extraction of Tensor Charges

Experiment + Lattice + Theory

Extraction of Tensor Charges

Quality of Fit

	_				
-		$\chi^2_{ m red}$			
Experiment	$N_{\rm dat}$	w/ LQCD	no LQCD		
Belle (cross section) [63]	1094	1.01	1.01		
Belle (Artru-Collins) [92]	183	0.74	0.73		
HERMES [72]	12	1.13	1.10		
COMPASS (p) [71]	26	1.24	0.75		
COMPASS (D) [71]	26	0.78	0.76		
STAR (2015) [94]	24	1.47	1.67		
STAR (2018) [64]	106	1.20	1.04		
ETMC δu [28]	1	0.71			
ETMC δd [28]	1	1.02			
PNDME δu [25]	1	8.68			
PNDME δd [25]	1	0.04			
Total $\chi^{2}_{\mathbf{red}}$ (N_{dat})		1.01 (1475)	0.98 (1471)		

Physical Pion Mass $N_f = 2 + 1 + 1$ Use δu and δd instead of g_T

Parameterize PDFs at input scale
$$Q_0^2 = m_c^2$$

 $f_i(x) = Nx^{\alpha}(1-x)^{\beta}(1+\gamma\sqrt{x}+\eta x)$
Evolve PDFs using DGLAP

$$\frac{d}{d \ln(\mu^2)}f_i(x,\mu) = \sum_j \int_x^1 \frac{dz}{z} P_{ij}(z,\mu)f_j(\frac{x}{z},\mu)$$
Mellin Space Techniques
 $d\sigma^{pp} = \sum_{ijkl} \frac{1}{(2\pi i)^2} \int dN \int dM \tilde{f}_j(N,\mu_0) \tilde{f}_l(M,\mu_0)$
 $\otimes \left[x_1^{-N} x_2^{-M} \tilde{\mathcal{H}}_{ik}^{pp}(N,M,\mu) U_{ij}^S(N,\mu,\mu_0) U_{kl}^S(M,\mu,\mu_0)\right]$

Quality of Fit

		$\chi^2_{ m red}$		
Experiment	$N_{ m dat}$	w/ LQCD	no LQCD	
Belle (cross section) [63]	1094	1.01	1.01	
Belle (Artru-Collins) [92]	183	0.74	0.73	
HERMES [72]	12	1.13	1.10	
COMPASS (p) [71]	26	1.24	0.75	
COMPASS (D) [71]	26	0.78	0.76	
STAR (2015) [94]	24	1.47	1.67	
STAR (2018) [64]	106	1.20	1.04	
ETMC δu [28]	1	0.71		
ETMC δd [28]	1	1.02		
PNDME δu [25]	1	8.68		
PNDME δd [25]	1	0.04		
Total χ^2_{red} (N _{dat})		1.01 (1475)	0.98 (1471)	

Quality of Fit (SIDIS)

COMPASS, arXiv:hep-ph/2301.02013 (2023)

Quality of Fit (STAR $\sqrt{s} = 200$ GeV)

L. Adamczyk et al., Phys. Rev. Lett. 115, 24501 (2015)

Quality of Fit (STAR $\sqrt{s} = 500$ GeV)

L. Adamczyk et al., Phys. Rev. B 780, 332-339 (2018)

Now that the observables have been calculated...

Now that we have calculated $\chi^2(a, data)...$

Likelihood Function

$$\mathcal{L}(\boldsymbol{a}, \text{data}) = \exp\left(-\frac{1}{2}\chi^2(\boldsymbol{a}, \text{data})\right)$$

$$\begin{array}{c} \text{Posterior Beliefs} \\ \mathcal{P}(\boldsymbol{a}|\text{data}) \\ \mathcal{P}(\boldsymbol{a}|\text{data}) \\ \sim \mathcal{L}(\boldsymbol{a}, \text{data}) \pi(\boldsymbol{a}) \end{array}$$

$$\begin{array}{c} \text{Posterior Beliefs} \\ \mathcal{P}(\boldsymbol{a}|\text{data}) \\ \mathcal{P}(\boldsymbol{a}|\text{data}) \\ \text{Prior Beliefs} \end{array}$$

For a quantity O(a): (for example, a PDF at a given value of (x, Q^2))

 $E[O] = \int d^n a \ \rho(\boldsymbol{a} \mid data) \ O(\boldsymbol{a})$ $V[O] = \left[d^n a \ \rho(\boldsymbol{a} \,|\, data) \ \left[O(\boldsymbol{a}) - E[O] \right]^2 \right]$ Build an MC ensemble $\begin{vmatrix} E[O] \approx \frac{1}{N} \sum_{k} O(\boldsymbol{a}_{k}) \\ V[O] \approx \frac{1}{N} \sum_{k}^{k} \left[O(\boldsymbol{a}_{k}) - E[O] \right]^{2} \end{vmatrix}$

Exact, but $n = \mathcal{O}(100)!$

Average over k sets of the parameters (replicas)

PYTHIA data ($\sqrt{s} = 10.58$ GeV)

PYTHIA data ($\sqrt{s} = 30.73$ GeV)

PYTHIA data ($\sqrt{s} = 50.88$ GeV)

PYTHIA data ($\sqrt{s} = 71.04$ GeV)

PYTHIA data ($\sqrt{s} = 91.19$ GeV)

Transversity PDFs (antiquarks)

DiFF Parameterization

 $\mathbf{M}_{h}^{u} = [2m_{\pi}, 0.40, 0.50, 0.70, 0.75, 0.80, 0.90, 1.00, 1.20, 1.30, 1.40, 1.60, 1.80, 2.00] \text{ GeV}.$

67

$$D_1^q(z, \mathbf{M}_h^{q,i}) = \sum_{j=1,2,3} \frac{N_{ij}^q}{\mathcal{M}_{ij}^q} z^{\alpha_{ij}^q} (1-z)^{\beta_{ij}^q},$$

204 parameters for D_1 48 parameters for H_1^{\triangleleft}

PDF Parameterization

$$h_1^{u_v}$$

$$h_1^{d_v}$$

$$h_1^{\bar{u}} = -h_1^{\bar{d}}$$

$$f(x,\mu_0^2) = rac{N}{\mathcal{M}} x^{lpha} (1-x)^{eta} (1+\gamma\sqrt{x}+\eta x),$$

68

15 parameters for h_1

Tensor Charge Numbers

Fit	δu	δd	g_T
no LQCD	0.50(7)	-0.04(14)	0.54(12)
w/ LQCD	0.71(2)	-0.200(6)	0.91(2)

