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• : most important quantity of QCD, key parameter of the Standard Model, but (by far) the least known fundamental 
coupling:  ( ,  , )

•Large efforts ongoing to reduce  (Snowmass 2022, arXiv:2203.08271)

•No “silver bullet” experiment can exquisitely determine . 

        ⇒ Strategy: combine many independent measurements with larger uncertainties. 

             Currently, best experimental determinations are ~1%-2% level.


Good prospects of measuring precisely  at JLab@22 GeV with Bjorken sum rule: 


No need for absolute measurement: -dependence of  provides .

JLab uniquely suited: 

For 22 GeV’s -domain, BJ-SR -dependence is ~50 times steeper than for EIC. With  obtained 

from -dependence ⇒ strongest  sensitivity. 

Determination at intermediate  reduces uncertainty by a factor of ~5 compared to determinations near .

Uncertainties from pQCD truncation and Higher-Twists remain small. 


Drawback of sum rules: integrals cannot be measured down to x=0: missing low-x issue.

: well known pQCD quantity: N5LO estimate +  at 5-loop ⇒ Minimal pQCD truncation error.


Negligible statistical uncertainties (inclusive data obtained concurrently with exclusive data more demanding in stats). Use 0.1% (conservative).

With polarized NH3 and 3He targets: 5% systematics (experimental only, i.e., not counting low-x uncertainty)

Low-x issue mitigated because 

Expected EIC data complement JLab data;

Intermediate : small missing low-x contribution.

Fitting simulated Bjorken sum data yields:    


Same exercise with EIC yields . Yet, EIC data required to 

minimize the low-x uncertainty of JLab’s determination.


One extraction from Lab@22 GeV can yield  with greater accuracy than world data combined. It is just one possibility to 
access  with JLab@22 GeV. Others, e.g., global fits of (un)polarized PDFs may also provide competitive determinations.
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 Two possibilities to extract  from the Bjorken sum rule:


•Previous slides: Measurement of -dependence of . 

•Need  at several  points. Only one (or a few) value of αs.

•Good accuracy.


 Or


•Do an absolute measurement of  and solve the Bj SR for :


•One  per   experimental data point.

•Lower systematic accuracy makes this not competitive for .

•Small uncorrelated uncertainty ( -dependence) provides good relative  mapping.
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•Need  at several  points. Only one (or a few) value of αs.

•Good accuracy.


 Or


•Do an absolute measurement of  and solve the Bj SR for :


•One  per   experimental data point.

•Lower systematic accuracy makes this not competitive for .

•Small uncorrelated uncertainty ( -dependence) provides good relative  mapping.
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⇒Sensitivity to high-order QCD 
loops not yet been measured
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Measuring αs(Q)

: start being sensitive to Q2 < 5.4 GeV2 NnLO
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Despite higher accuracy, large  world data 
never sensitive to it. (Also, often: single point 
measurement.)


pQCD -dependence has already been tested 
beyond LO using various observables. This test 
isolates loop effects. 
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Unique direct sensitivity to .

Despite higher accuracy, large  world data 
never sensitive to it. (Also, often: single point 
measurement.)


pQCD -dependence has already been tested 
beyond LO using various observables. This test 
isolates loop effects. 
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Bjorken sum rule 

pQCD radiative 

corrections (  Scheme.)MS Non-perturbative 1/Q2n 


power corrections. 

(+rad. corr.)

Nucleon axial

charge. (Value


of  in the 
 limit)

Γp−n
1 (Q2)

Q2 → ∞

+
M2

Q2 [a2(αs) + 4d2(αs) + 4f2(αs)] + . . .

  ⇒ Two possibilities to extract :

•Do an absolute measurement of  and solve the Bj SR for .


•One  per   experimental data point.

•Poor systematic accuracy, typically  ~10% at high energy ⇒ Not competitive.


•Measurement of -dependence of 

Need several   points. Only one (or a few) value of αs.

Good accuracy: 1990’s CERN/SLAC data yielded: =0.120±0.009 
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•Poor systematic accuracy, typically  ~10% at high energy ⇒ Not competitive.Δαs /αs

The Bj SR allows 
to extract  

at all scale! 
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  ⇒ Two possibilities to extract :

•Do an absolute measurement of  and solve the Bj SR for .


•One  per   experimental data point.

•Poor systematic accuracy, typically  ~10% at high energy ⇒ Not competitive.


•Measurement of -dependence of .

•Need  at several  points. Only one (or a few) value of αs.

•Good accuracy: 1990’s CERN/SLAC data yielded: =0.120±0.009 
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Bjorken sum rule at JLab@22 GeV 

•Use 6% for experimental systematics (i.e. not including the uncertainty on unmeasured low-x). 
•Nuclear corrections:


•D: negligible assuming we can tag the ~spectator proton

•3He: 2% (5% on n, which contribute to 1/3 to the Bjorken sum: 5%/3≃2%)


•Polarimetries: Assume ΔPe-ΔPN = 3%.

•Radiative corrections: 1%

•F1 to form g1 from A1: 2%

•g2 contribution to longitudinal asym: Negligible, assuming it will be measured. 

•Dilution/purity: 


•Bjorken sum from P & D: 4%

•Bjorken sum from P & 3He: 3% 


•Contamination from particle miss-identification: Assumed negligible. 

•Detector/trigger efficiencies, acceptance, beam currents: Neglected (asym).

Adding in 

quadrature: ~5% 

•Statistical uncertainties are expected to be negligible: 

•JLab is a high-luminosity facility;

•A JLab@22 GeV program would include polarized DVCS and TMD experiments. Those imply 
long running times compared to those needed for inclusive data gathering;

•High precision data already available from 6 GeV and 12 GeV for the lower  bins and 
moderate x.


•Looking at the 6 GeV CLAS EG1dvcs data, required statistics for DVCS and TMD experiments 
imply statistical uncertainties < 0.1% on the Bjorken sum. For the present exercise we will use 0.1% 
on all -points with -bin sizes increasing exponentially with .
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Q2 Q2 Q2
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Under these assumptions:
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Comparison with EIC 
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Further complementarity: 

• The Bjorken sum -dependence is up to 50 times 

steeper in the JLab covered range than that of EIC. 
Since we access  via relative -dependence 

⇒ High  sensitivity.


• EIC has essentially no unmeasured low-x issue and 
can complement JLab data.  

Q2

αs Q2

αs



Low-x uncertainty
•For the  bins covered by EIC, global fits will be available up to the lowest x covered by EIC.  

      ⇒ assume 10% uncertainty on that missing (for the JLab measurement) low-x part.

      Assume 100% for the very small-x contribution not covered by EIC.


•For the 5 lowest  bins not covered by EIC: 

•Bin #5 close to the EIC coverage ⇒ Constrained extrapolation, assume 20% uncertainty on missing low-x part.

•Bin #4, assume 40% uncertainty, Bin #3, assume 60%, Bin #2, assume 80%, Bin #1, assume 100%. 
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Bjorken sum rule at JLab@22 GeV (meas.+low-x) 

We separate the total experimental 
uncertainty (i.e. excluding the low-x error) in 
point-to-point correlated and 
uncorrelated contributions, assuming 
that 40% of the total uncertainty is 
point-to-point correlated (as obtained 
for EG1dvcs Bjorken sum analysis).


Low-x uncertainty is assumed to be 
fully point-to-point correlated.


(The above assumptions are not crucial for the 
extraction of . Also, the proper separation would 
be determined from analysis of the actual 22 GeV 
data, without assumption.)

αs
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Extraction of αs(MZ)
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Fit and procedure:

• Main fit function: Bjorken sum approximant at 

N4LO+twist-4, with  at 4-loop (i.e. ), for main 
result.


• Secondary fit at N4LO+twist-4 and  at 3-loop, 
for pQCD truncation uncertainty.


• Systematically vary fit  range to minimize total 
uncertainty: Low  points have high  sensitivity but 
larger pQCD truncation error. High  points have 
smaller  sensitivity but smaller pQCD error. May not be 
worth including the lowest and/or highest  points. (Not 
worth using all points for statistics sake since stat. error is 
negligible.)


• 2-parameter fit:

1.  is the free parameter of interest. From it, we obtain 

.

2. Twist-4: free fit parameter. 
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Extraction of αs(MZ)
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Fit and procedure:

• Main fit function: Bjorken sum approximant at 

N4LO+twist-4, with  at 4-loop (i.e. ), for main 
result.


• Secondary fit at N3LO+twist-4 and  at 3-loop, 
for pQCD truncation uncertainty.


• Systematically vary fit  range to minimize total 
uncertainty: Low  points have high  sensitivity but 
produce larger pQCD truncation error. High  points 
have smaller  sensitivity and larger experimental 
systematic uncertainty but smaller pQCD error. ⇒May 
not be worth including the lowest and/or highest  
points. (Using all points for statistics sake is not worth it, 
since stat. error is negligible.)


• 2-parameter fit:

1.  is the free parameter of interest. From it, we obtain 

.

2. Twist-4: free fit parameter. 
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Fit these data

Extraction of αs(MZ)
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Fitting the data         yields

Δαs

αs
(MZ) ≃ 0.61 %
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