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Importance of measuring a (M)

. most important quantity of QCD, key parameter of the Standard Model, but (by far) the least known fundamental
coupling: Aa,/ar, ~ 1077 (Aa/a =~ 10710, AG,/Gp =~ 107°, AGy /Gy ~ 107°)
Large efforts ongoing to reduce Aa,/a, (Snowmass 2022, arXiv:2203.08271)

*No “silver bullet” experiment can exquisitely determine a.
=> Strategy: combine many independent measurements with larger uncertainties.

Currently, best experimental determinations are ~1%-2% level.
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Measuring o (M)
. most important quantity of QCD, key parameter of the Standard Model, but (by far) the least known fundamental
coupling: Aa,/ar, ~ 1077 (Aa/a =~ 10710, AG,/Gp =~ 107°, AGy /Gy ~ 107°)
Large efforts ongoing to reduce Aa,/a, (Snowmass 2022, arXiv:2203.08271)
*No “silver bullet” experiment can exquisitely determine a.
=> Strategy: combine many independent measurements with larger uncertainties.
Currently, best experimental determinations are ~1%-2% level.

a

«Good prospects of measuring precisely a(M:) at JLab@22 GeV with Bjorken sum rule: r-"(0? = [ gl ™"(x, 0%)dx = égA [1 - —S]
T

Details given in

talk at JLab@?22

GeV Workshop,
Jan. 2023

Jeffer?on Lab

>Thomas Jetierson Nathnal Acceleraiar Fecilty A.Deur. JLab 22 GeV Open Discussion. 10/21/2023

xpiovieng the Natwe o Matter



Measuring o (M)
. most important quantity of QCD, key parameter of the Standard Model, but (by far) the least known fundamental
coupling: Aa,/ar, ~ 1077 (Aa/a =~ 10710, AG,/Gp =~ 107°, AGy /Gy ~ 107°)
Large efforts ongoing to reduce Aa,/a, (Snowmass 2022, arXiv:2203.08271)
*No “silver bullet” experiment can exquisitely determine a.
=> Strategy: combine many independent measurements with larger uncertainties.
Currently, best experimental determinations are ~1%-2% level.

«Good prospects of measuring precisely a(M:) at JLab@22 GeV with Bjorken sum rule: r-"(0? = [ gl ™"(x, Q%)dx = é 24 [1 _ ﬁ]
T

«No need for absolute measurement: Q*-dependence of Flf (0?) provides .
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. most important quantity of QCD, key parameter of the Standard Model, but (by far) the least known fundamental
coupling: Aa,/ar, ~ 1077 (Aa/a =~ 10710, AG,/Gp =~ 107°, AGy /Gy ~ 107°)
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T

«No need for absolute measurement: Q*-dependence of Flf (0?) provides .

*JLab uniquely suited:
For 22 GeV’s Q*-domain, BJ-SR Q?-dependence is ~50 times steeper than for EIC. With a, obtained
from Q?-dependence = strongest a sensitivity.
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«Good prospects of measuring precisely a(M:) at JLab@22 GeV with Bjorken sum rule: r-"(0? = [ gl ™"(x, Q%)dx = égA [1 _ ﬁ]
T

«No need for absolute measurement: Q°-dependence of IR ~"(Q?) provides a,.
*JLab uniquely suited:
For 22 GeV’s Q*-domain, BJ-SR Q?-dependence is ~50 times steeper than for EIC. With a, obtained
from Q?-dependence = strongest a, sensitivity.
,Determination at intermediate Q? reduces uncertainty by a factor of ~5 compared to determinations near M%O.
»Uncertainties from pQCD truncation and Higher-Twists remain small.
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*JLab uniquely suited:
.For 22 GeV’s Q*-domain, BJ-SR Q?-dependence is ~50 times steeper than for EIC. With a, obtained
from Q?-dependence = strongest a, sensitivity.
,Determination at intermediate Q? reduces uncertainty by a factor of ~5 compared to determinations near Méo.
»Uncertainties from pQCD truncation and Higher-Twists remain small.

-Fll’ ~(Q?): well known pQCD quantity: N5LO estimate + a, at 5-loop = Minimal pQCD truncation error.

*Non-perterturbative modeling, such PDFs, not needed (Sum rule + g, well measured).
*Negligible statistical uncertainties (inclusive data obtained concurrently with exclusive data more demanding in stats).
*With polarized NH3 and 3He targets: 5% systematics (experimental only, i.e., not counting low-x uncertainty)

*[Low-x 1ssue mitigated because
»Expected EIC data complement JLab data;
Intermediate Q?: small missing low-x contribution.
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.LOW'X iSSUC mltlgated because Compared to EIC & 3 most precise experimental determinations in PDG

»Expected EIC data complement JLab data; EIC alone —

Intermediate Q?: small missing low-x contribution. JLab@?22 GeV+EIC -@-

o . . . . — 31 ——
*Fitting simulated Bjorken sum data yields:| Ao, /o, ~ 6.1 X 10 3 IZ:II;?CF(T)
+4.2(unicor.) £ 3.6(cor.) + 2.6(theo.)] x 1073 | ) T
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«Same exercise with EIC yields Aa,/a, 2 1.3 % . Yet, EIC data required to 0110 0115 0120 0125 013
minimize the low-x uncertainty of JLab’s determination. as(M2)

*One extraction from Lab@?22 GeV can yield a, with greater accuracy than world data combined.



Measuring o (M)
. most important quantity of QCD, key parameter of the Standard Model, but (by far) the least known fundamental
coupling: Aa,/ar, ~ 1077 (Aa/a =~ 10710, AG,/Gp =~ 107°, AGy /Gy ~ 107°)
«Large efforts ongoing to reduce Aa,/a, (Snowmass 2022, arXiv:2203.08271)
*No “silver bullet” experiment can exquisitely determine .
=> Strategy: combine many independent measurements with larger uncertainties.
Currently, best experimental determinations are ~1%-2% level.

«Good prospects of measuring precisely a (M:) at JLab@22 GeV with Bjorken sum rule: 7-"(0? = [ gl "(x, Q%)dx = égA [1 _ ﬁ]
T

«No need for absolute measurement: Q°-dependence of IR ~(Q?) provides a.
*JLab uniquely suited:
.For 22 GeV’s Q*-domain, BJ-SR Q?-dependence is ~50 times steeper than for EIC. With a, obtained
from Q?-dependence = strongest a, sensitivity.
,Determination at intermediate Q? reduces uncertainty by a factor of ~5 compared to determinations near Méo.
»Uncertainties from pQCD truncation and Higher-Twists remain small.

-Fll’ ~(Q?): well known pQCD quantity: N5LO estimate + a, at 5-loop = Minimal pQCD truncation error.

*Non-perterturbative modeling, such PDFs, not needed (Sum rule + g, well measured).
*Negligible statistical uncertainties (inclusive data obtained concurrently with exclusive data more demanding in stats).
*With polarized NH3 and 3He targets: 5% systematics (experimental only, i.e., not counting low-x uncertainty)

.LOW'X iSSllC mltlgated because Compared to EIC & 3 most precise experimental determinations in PDG

»Expected EIC data complement JLab data; EIC alone —

Intermediate Q?: small missing low-x contribution. JLab@?22 GeV+EIC -@-

o . . . . — 31 ——
*Fitting simulated Bjorken sum data yields:| Ao, /o, ~ 6.1 X 10 3 IZ:I];]?@F(T)
+4.2(unicor.) £ 3.6(cor.) + 2.6(theo.)] x 1073 | ) T
Verbytskyi (2j) —

«Same exercise with EIC yields Aa,/a, 2 1.3 % . Yet, EIC data required to 0110 0115 0120 0125 013
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*One extraction from Lab@?22 GeV can yield a, with greater accuracy than world data combined. It 1s just one possibility to
access a, with JLab@?22 GeV. Others, e.g., global fits of (un)polarized PDFs may also provide competitive determinations.



Measuring o,

Two possibilities to extract a, from the Bjorken sum rule:

oPrevious slides: Measurement of Q*-dependence of F’f_”(Qz).
Need [ ™" at several 07 points. Only one (or a few) value of as.
*Good accuracy.
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Small uncorrelated uncertainty (Q*-dependence) provides good relative a,(Q?) mapping.
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Measuring a,(Q)
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Bjorken sum rule

i i 1 a a,\’ a;\’ a;\* a,\’
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= Two possibilities to extract a (M,):
eDo an absolute measurement of I'” _”(Qz) and solve the Bj SR for aS(Qz).

a, /7 CERN COMPASS
a, /n DESY HERMES
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Olp5/Te
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08 -

cOXxXx<oD> N

06 -

The Bj SR allows
to extract aS(Qz)
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| ozgl/n Hall A/CLAS (2004)
A agl/n CLAS EG1b (2008)
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ePoor systematic accuracy, typically Aa,/a, ~10% at hlgh energy = Not competitive.
Jeffergon Lab
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Bjorken sum rule
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= Two possibilities to extract a (M,):
eDo an absolute measurement of F’f ~(Q?) and solve the Bj SR for aS(Qz).

eOne a, per Flf ~" experimental data point.

ePoor systematic accuracy, typically Aa./a, ~10% at high energy = Not competitive.

eMeasurement of Qz-dependence of Flf (0?).

L oNeed ["™" at several 07 points. Only one (or a few) value of os

*Good accuracy: 1990°s CERN/SLAC data yielded: oy (M,)=0.120+0.009

Altarelli, Ball, Forte, Ridolfi, Nucl.Phys. B496 337 (1997) §
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Bjorken sum rule at JLab@?22 GeV

eStatistical uncertainties are expected to be negligible:
eJLab 1s a high-luminosity facility;
A JLab@?22 GeV program would include polarized DVCS and TMD experiments. Those imply
long running times compared to those needed for inclusive data gathering;
*High precision data already available from 6 GeV and 12 GeV for the lower Q7 bins and

moderate x.

*Looking at the 6 GeV CLAS EGldvcs data, required statistics for DVCS and TMD experiments
imply statistical uncertainties < 0.1% on the Bjorken sum. For the present exercise we will use 0.1%

on all Q%-points with Q?-bin sizes increasing exponentially with Q2.

*Use 6% for experimental systematics (1.e. not including the uncertainty on unmeasured low-x).

eNuclear corrections:

*D: negligible assuming we can tag the ~spectator proton

o3He: 2% (5% on n, which contribute to 1/3 to the Bjorken sum: 5%/3=2%)
ePolarimetries: Assume AP.. APy= 3%.
eRadiative corrections: 1%

o[ to form g from A1: 2% Adding in
o, contribution to longitudinal asym: Negligible, assuming it will be measured.| quadrature: ~5%
eDilution/purity:

eBjorken sum from P & D: 4%

eBjorken sum from P & 3He: 3%
eContamination from particle miss-identification: Assumed negligible.
eDetector/trigger efficiencies, acceptance, beam currents: Neglected (asym).

J_effergon Lab
Y Thonag Jefienson Nathaal Accelerator Feciity A.Deur.]Lab 22 GeV Open Discussion. 10/21/2023



Under these assumptions:

Sum

<

Bjorke

Jeffergon Lab

Nat ml;h celerator F

> l h na err-

0.225

0.2

0.175

0.15

0.125

0.1

0.075

0.05

0.025

0

B Expected JLab (< 22 GeV)

— Full sum

Missing low-x part
(neglected missing high-x part)
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Comparison with EIC

S ,
o I
S 0.225 B Expected JLab (< 22 GeV)
E) -~ Estimate EIC
2 0.2 — — Full sum
- . %K(grror bars not shown)
0.175 e
Obvious complementarity with EIC
0.5
’ Further complementarity:
0.125 - e The Bjorken sum Q?-dependence is up to 50 times
i steeper 1n the JLab covered range than that of EIC.
0.1 Since we access a, via relative Q°-dependence
= High a, sensitivity.
-  EIC has essentially no unmeasured low-x issue and
0.075
- can complement JLab data.
0.05
0.025
0 : N SN N ST o
1 10 QZ ( GeVZ )
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Low-x uncertainty

*For the O bins covered by EIC, global fits will be available up to the lowest x covered by EIC.
= assume 10% uncertainty on that missing (for the JLab measurement) low-x part.

Assume 100% for the very small-x contribution not covered by EIC.

*For the 5 lowest Q7 bins not covered by EIC:
*Bin #5 close to the EIC coverage = Constrained extrapolation, assume 20% uncertainty on missing low-x part.

*Bin #4, assume 40% uncertainty, Bin #3, assume 60%, Bin #2, assume 80%, Bin #1, assume 100%.

S
3 L
20225
S M Expected JLab (< 22 GeV)
§ -~ Estimate EIC
& 0.2~ — Full sum
i (Error bars not shown)
0175
0.5
0.125 -
0.1+
0.075
0.05
0.025 -
0 i L L L \ILL P sy e I L L L L L L L ‘ L L L L L L
1 10 2 2
Jeffei) son Lab QO (GeV)
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Bjorken Sum
&
N}
¥

&
b

0.175
0.15
0.125
0.1
0.075
0.05
0.025

0
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Bjorken sum rule at JLab@?22 GeV (meas.+low-x)

*  Expected, 22, with low-x corrected,

assuming no missing high-x strength

Point-to-point uncorrel. uncertainty

Point-to-point correlated uncertainty

We separate the total experimental
uncertainty (i.e. excluding the low-x error) 1n
point-to-point correlated and
uncorrelated contributions, assuming
that 40% of the total uncertainty 1s
point-to-point correlated (as obtained
for EG1dvcs Bjorken sum analysis).

Low-x uncertainty 1s assumed to be
fully point-to-point correlated.

(The above assumptions are not crucial for the
extraction of a,. Also, the proper separation would
be determined from analysis of the actual 22 GeV
data, without assumption.)

10 QZ (GeVZ)
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Extraction of a (M)

I Fit and procedure:
i * Main fit function: Bjorken sum approximant at
N4LO+twist-4, with a, at 4-loop (i.e. f53), for main
- result.
- 2 3 4
i Jron = L, [1 _ & 3.58(ﬁ> ~2021 (1> _ 175.7<&> +
i 6 T T T T
: T % |
[ i1 S, 4w pr In(n(Q*/AD) |
- L O = [1 f In(Q2/A2)
i ﬁlz 2 2702 2702 ﬂZﬂO
g 1 SR <ln (In(Q?/A?%)) — In(In(Q*/A?)) — 1+7)
' i <—1n3(1n(Q2/A2)) + > In?(In(Q?/A?)) + 2 In(In(Q?/A?))—
- *  Expected, 22, v poln (Q*/A9) 5 2 5 5
- assuming no m 2 4
- ! —3%1 (In(Q*/A) + deid = ) +— 4ﬁ —— <1n4(1n(Q2/A§))—
- Point-to-point 2 g 2 Poln(Q7/A5)
13—3 In*(In(Q?/A\?)) — % In*(In(Q?/A?)) + 4 In(In(Q?/A\?%)) + %+
- Point-to-point ﬂ 5
i < ; % (2 In%(In(Q*/A2)) — In(In(Q?/A2)) — 1)~
— 1
p 3ﬂ 0 <21 (In(Q%/A%) + é)

‘ 7

] 2 (ucecy )

cllity
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0.15
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0.075
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Extraction of a (M)

Fit and procedure:

* Main fit function: Bjorken sum approximant at
N4LO+twist-4, with a, at 4-loop (1.e. f;), for main
result.

=

1

T

_ [1 % 358
—68A .

+

2 3 4
o o o
(_s> - 20.21<_s> - 175.7<_s>
T T T

X X

Expected, 22, with low-x
assuming no missing high

 Secondary fit at N3LO+twist-4 and a, at 3-loop,
for pQCD truncation uncertainty.

« Systematically vary fit Q2 range to minimize total
uncertainty: Low Q2 points have high a, sensitivity but
produce larger pQCD truncation error. High QO points
have smaller a; sensitivity and larger experimental
systematic uncertainty but smaller pQCD error. =May

not be worth including the lowest and/or highest Q2
points. (Using all points for statistics sake is not worth it,
since stat. error is negligible.)

Point-to-point correlated|« 2-parameter fit:

Point-to-point uncorrel. u

1. A, 1s the free parameter of interest. From it, we obtain
a,(M,).
2. Twist-4: free fit parameter.

Na! Hl»« celerator F
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Extraction of a (M)

s 025
3 L
e i
S 0225
=2 i
~
S
R 02+ .
- Fit these data R
I Itz
0.175 - % e -
: Fitting the data yields
0.15 Aas
: O
0.125 -
0.1 *  Expected, 22, with low-x corrected,
- assuming no missing high-x strength
0.075 - . . .
- Point-to-point correlated uncertainty
0.05 - . . .
- Point-to-point uncorrel. uncertainty
0.025
0 i \

1 10 2 2
O (GeV)
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