Measurements of α_s with JLab@22 GeV

A. Deur Jefferson Lab

- Measurement of $\alpha_s(M_z)$
- Measurement of $\alpha_s(Q)$ for $1 < Q^2 < 22 \text{ GeV}^2$

Importance of measuring $\alpha_s(M_z)$

- • α_s : most important quantity of QCD, key parameter of the Standard Model, but (by far) the least known fundamental coupling: $\Delta \alpha_s / \alpha_s \simeq 10^{-2} \, (\Delta \alpha / \alpha \simeq 10^{-10}, \ \Delta G_F / G_F \simeq 10^{-6}, \ \Delta G_N / G_N \simeq 10^{-5})$
- •Large efforts ongoing to reduce $\Delta\alpha_s/\alpha_s$ (Snowmass 2022, arXiv:2203.08271)
- •No "silver bullet" experiment can exquisitely determine α_s .
 - ⇒ Strategy: combine many independent measurements with larger uncertainties. Currently, best experimental determinations are \sim 1%-2% level.

Fig. from Part. Data Group.

- • α_s : most important quantity of QCD, key parameter of the Standard Model, but (by far) the least known fundamental coupling: $\Delta \alpha_s / \alpha_s \simeq 10^{-2} \ (\Delta \alpha / \alpha \simeq 10^{-10}, \ \Delta G_F / G_F \simeq 10^{-6}, \ \Delta G_N / G_N \simeq 10^{-5})$
- •Large efforts ongoing to reduce $\Delta\alpha_s/\alpha_s$ (Snowmass 2022, arXiv:2203.08271)
- •No "silver bullet" experiment can exquisitely determine α_s .
 - \Rightarrow Strategy: combine many independent measurements with larger uncertainties. Currently, best experimental determinations are ~1%-2% level.
- Good prospects of measuring precisely $\alpha_s(M_z)$ at JLab@22 GeV with Bjorken sum rule: $\Gamma_1^{p-n}(Q^2) \equiv \int g_1^{p-n}(x,Q^2) dx = \frac{1}{6}g_A \left[1 \frac{\alpha_s}{\pi} \cdots\right]$

Details given in talk at JLab@22 GeV Workshop, Jan. 2023

- • α_s : most important quantity of QCD, key parameter of the Standard Model, but (by far) the least known fundamental coupling: $\Delta \alpha_s / \alpha_s \simeq 10^{-2} \ (\Delta \alpha / \alpha \simeq 10^{-10}, \ \Delta G_F / G_F \simeq 10^{-6}, \ \Delta G_N / G_N \simeq 10^{-5})$
- •Large efforts ongoing to reduce $\Delta\alpha_s/\alpha_s$ (Snowmass 2022, arXiv:2203.08271)
- •No "silver bullet" experiment can exquisitely determine α_s .
 - \Rightarrow Strategy: combine many independent measurements with larger uncertainties. Currently, best experimental determinations are ~1%-2% level.
- Good prospects of measuring precisely $\alpha_s(M_z)$ at JLab@22 GeV with Bjorken sum rule: $\Gamma_1^{p-n}(Q^2) \equiv \left[g_1^{p-n}(x,Q^2)dx = \frac{1}{6}g_A\left[1 \frac{\alpha_s}{\pi}\cdots\right]\right]$
- •No need for absolute measurement: Q^2 -dependence of $\Gamma_1^{p-n}(Q^2)$ provides α_s .

- • α_s : most important quantity of QCD, key parameter of the Standard Model, but (by far) the least known fundamental coupling: $\Delta \alpha_s / \alpha_s \simeq 10^{-2} \ (\Delta \alpha / \alpha \simeq 10^{-10}, \ \Delta G_F / G_F \simeq 10^{-6}, \ \Delta G_N / G_N \simeq 10^{-5})$
- •Large efforts ongoing to reduce $\Delta \alpha_s / \alpha_s$ (Snowmass 2022, arXiv:2203.08271)
- •No "silver bullet" experiment can exquisitely determine α_s .

ving the Nature of Matter

- \Rightarrow Strategy: combine many independent measurements with larger uncertainties. Currently, best experimental determinations are ~1%-2% level.
- Good prospects of measuring precisely $\alpha_s(M_z)$ at JLab@22 GeV with Bjorken sum rule: $\Gamma_1^{p-n}(Q^2) \equiv \left[g_1^{p-n}(x,Q^2)dx = \frac{1}{6}g_A\left[1 \frac{\alpha_s}{\pi}\cdots\right]\right]$
- •No need for absolute measurement: Q^2 -dependence of $\Gamma_1^{p-n}(Q^2)$ provides α_s .

Measuring $\alpha_{\rm s}(M_{\tau})$

- • α_s : most important quantity of QCD, key parameter of the Standard Model, but (by far) the least known fundamental coupling: $\Delta \alpha_s / \alpha_s \simeq 10^{-2} (\Delta \alpha / \alpha \simeq 10^{-10}, \ \Delta G_F / G_F \simeq 10^{-6}, \ \Delta G_N / G_N \simeq 10^{-5})$
- •Large efforts ongoing to reduce $\Delta \alpha_s / \alpha_s$ (Snowmass 2022, arXiv:2203.08271)
- •No "silver bullet" experiment can exquisitely determine α_s .
 - ⇒ Strategy: combine many independent measurements with larger uncertainties. Currently, best experimental determinations are \sim 1%-2% level.
- Good prospects of measuring precisely $\alpha_s(M_z)$ at JLab@22 GeV with Bjorken sum rule: $\Gamma_1^{p-n}(Q^2) \equiv \left[g_1^{p-n}(x,Q^2)dx = \frac{1}{6}g_A\right]1 \frac{\alpha_s}{\pi}\cdots$
- •No need for absolute measurement: Q^2 -dependence of $\Gamma_1^{p-n}(Q^2)$ provides α_s .
- •JLab uniquely suited:

ring the Nature of Matter

For 22 GeV's Q^2 -domain, BJ-SR Q^2 -dependence is ~50 times steeper than for EIC. With α_s obtained

- • α_s : most important quantity of QCD, key parameter of the Standard Model, but (by far) the least known fundamental coupling: $\Delta \alpha_s / \alpha_s \simeq 10^{-2} \ (\Delta \alpha / \alpha \simeq 10^{-10}, \ \Delta G_F / G_F \simeq 10^{-6}, \ \Delta G_N / G_N \simeq 10^{-5})$
- •Large efforts ongoing to reduce $\Delta \alpha_s / \alpha_s$ (Snowmass 2022, arXiv:2203.08271)
- •No "silver bullet" experiment can exquisitely determine α_s .
 - \Rightarrow Strategy: <u>combine many independent measurements with larger uncertainties</u>. Currently, best experimental determinations are ~1%-2% level.
- Good prospects of measuring precisely $\alpha_s(M_z)$ at JLab@22 GeV with Bjorken sum rule: $\Gamma_1^{p-n}(Q^2) \equiv \left[g_1^{p-n}(x,Q^2)dx = \frac{1}{6}g_A\left[1 \frac{\alpha_s}{\pi}\cdots\right]\right]$
- •No need for absolute measurement: Q^2 -dependence of $\Gamma_1^{p-n}(Q^2)$ provides α_s .
- •JLab uniquely suited:
 - For 22 GeV's Q^2 -domain, BJ-SR Q^2 -dependence is ~50 times steeper than for EIC. With α_s obtained from Q^2 -dependence \Rightarrow strongest α_s sensitivity.
 - Determination at intermediate Q^2 reduces uncertainty by a factor of ~ 5 compared to determinations near $M_{Z^0}^2$.
 - •Uncertainties from pQCD truncation and Higher-Twists remain small.

- • α_s : most important quantity of QCD, key parameter of the Standard Model, but (by far) the least known fundamental coupling: $\Delta \alpha_s / \alpha_s \simeq 10^{-2} \ (\Delta \alpha / \alpha \simeq 10^{-10}, \ \Delta G_F / G_F \simeq 10^{-6}, \ \Delta G_N / G_N \simeq 10^{-5})$
- •Large efforts ongoing to reduce $\Delta \alpha_s / \alpha_s$ (Snowmass 2022, arXiv:2203.08271)
- •No "silver bullet" experiment can exquisitely determine α_s .
 - \Rightarrow Strategy: <u>combine many independent measurements with larger uncertainties.</u> Currently, best experimental determinations are ~1%-2% level.
- Good prospects of measuring precisely $\alpha_s(M_z)$ at JLab@22 GeV with Bjorken sum rule: $\Gamma_1^{p-n}(Q^2) \equiv \left[g_1^{p-n}(x,Q^2)dx = \frac{1}{6}g_A\left[1 \frac{\alpha_s}{\pi}\cdots\right]\right]$
- •No need for absolute measurement: Q^2 -dependence of $\Gamma_1^{p-n}(Q^2)$ provides α_s .
- •JLab uniquely suited:
 - For 22 GeV's Q^2 -domain, BJ-SR Q^2 -dependence is ~50 times steeper than for EIC. With α_s obtained from Q^2 -dependence \Rightarrow strongest α_s sensitivity.
 - Determination at intermediate Q^2 reduces uncertainty by a factor of ~ 5 compared to determinations near $M_{Z^0}^2$.
 - •Uncertainties from pQCD truncation and Higher-Twists remain small.
- • $\Gamma_1^{p-n}(Q^2)$: well known pQCD quantity: N⁵LO estimate + α_s at 5-loop \Rightarrow Minimal pQCD truncation error.
- •Non-perterturbative modeling, such PDFs, not needed (Sum rule $+ g_A$ well measured).
- •Negligible statistical uncertainties (inclusive data obtained concurrently with exclusive data more demanding in stats).
- •With polarized NH₃ and ³He targets: 5% systematics (experimental only, i.e., not counting low-x uncertainty)
- •Low-x issue mitigated because
 - Expected EIC data complement JLab data;
 - Intermediate Q^2 : small missing low-x contribution.

Measuring $\alpha_{\rm s}(M_{\tau})$

- • α_s : most important quantity of QCD, key parameter of the Standard Model, but (by far) the least known fundamental coupling: $\Delta \alpha_s / \alpha_s \simeq 10^{-2} (\Delta \alpha / \alpha \simeq 10^{-10}, \ \Delta G_F / G_F \simeq 10^{-6}, \ \Delta G_N / G_N \simeq 10^{-5})$
- •Large efforts ongoing to reduce $\Delta \alpha_s / \alpha_s$ (Snowmass 2022, arXiv:2203.08271)
- •No "silver bullet" experiment can exquisitely determine α_s .
 - ⇒ Strategy: combine many independent measurements with larger uncertainties. Currently, best experimental determinations are \sim 1%-2% level.
- Good prospects of measuring precisely $\alpha_s(M_z)$ at JLab@22 GeV with Bjorken sum rule: $\Gamma_1^{p-n}(Q^2) \equiv \left[g_1^{p-n}(x,Q^2)dx = \frac{1}{6}g_A\right]1 \frac{\alpha_s}{\pi}\cdots$
- •No need for absolute measurement: Q^2 -dependence of $\Gamma_1^{p-n}(Q^2)$ provides α_s .
- •JLab uniquely suited:
 - For 22 GeV's Q^2 -domain, BJ-SR Q^2 -dependence is ~ 50 times steeper than for EIC. With α_s obtained from Q^2 -dependence \Rightarrow strongest α_s sensitivity.
 - Determination at intermediate Q^2 reduces uncertainty by a factor of ~ 5 compared to determinations near $M_{Z^0}^2$.
 - •Uncertainties from pQCD truncation and Higher-Twists remain small.
- • $\Gamma_1^{p-n}(Q^2)$: well known pQCD quantity: N⁵LO estimate + α_s at 5-loop \Rightarrow Minimal pQCD truncation error.
- •Non-perterturbative modeling, such PDFs, not needed (Sum rule $+ g_A$ well measured).
- •Negligible statistical uncertainties (inclusive data obtained concurrently with exclusive data more demanding in stats).
- •With polarized NH₃ and ³He targets: 5% systematics (experimental only, i.e., not counting low-x uncertainty)
- •Low-x issue mitigated because
 - Expected EIC data complement JLab data;
 - Intermediate Q^2 : small missing low-x contribution.

•Fitting simulated Bjorken sum data yields: $\Delta \alpha_s / \alpha_s \simeq 6.1 \times 10^{-3}$ $\pm 4.2 \text{(uncor.)} \pm 3.6 \text{(cor.)} \pm 2.6 \text{(theo.)} \times 10^{-3}$

•Same exercise with EIC yields $\Delta \alpha_s / \alpha_s \gtrsim 1.3 \%$. Yet, EIC data required to minimize the low-x uncertainty of JLab's determination.

•One extraction from Lab@22 GeV can yield α_s with greater accuracy than world data combined.

Measuring $\alpha_{\rm s}(M_{\rm p})$

- • α_s : most important quantity of QCD, key parameter of the Standard Model, but (by far) the least known fundamental coupling: $\Delta \alpha_s / \alpha_s \simeq 10^{-2} (\Delta \alpha / \alpha \simeq 10^{-10}, \ \Delta G_F / G_F \simeq 10^{-6}, \ \Delta G_N / G_N \simeq 10^{-5})$
- •Large efforts ongoing to reduce $\Delta \alpha_s / \alpha_s$ (Snowmass 2022, arXiv:2203.08271)
- •No "silver bullet" experiment can exquisitely determine α_s .
 - ⇒ Strategy: combine many independent measurements with larger uncertainties. Currently, best experimental determinations are ~1%-2% level.
- Good prospects of measuring precisely $\alpha_s(M_z)$ at JLab@22 GeV with Bjorken sum rule: $\Gamma_1^{p-n}(Q^2) \equiv \left[g_1^{p-n}(x,Q^2)dx = \frac{1}{6}g_A\right]1 \frac{\alpha_s}{\pi}\cdots\right]$
- •No need for absolute measurement: Q^2 -dependence of $\Gamma_1^{p-n}(Q^2)$ provides α_s .
- •JLab uniquely suited:
 - For 22 GeV's Q^2 -domain, BJ-SR Q^2 -dependence is ~ 50 times steeper than for EIC. With α_s obtained from Q^2 -dependence \Rightarrow strongest α_s sensitivity.
 - Determination at intermediate Q^2 reduces uncertainty by a factor of ~ 5 compared to determinations near $M_{Z^0}^2$.
 - •Uncertainties from pQCD truncation and Higher-Twists remain small.
- • $\Gamma_1^{p-n}(Q^2)$: well known pQCD quantity: N⁵LO estimate + α_s at 5-loop \Rightarrow Minimal pQCD truncation error.
- •Non-perterturbative modeling, such PDFs, not needed (Sum rule $+ g_A$ well measured).
- •Negligible statistical uncertainties (inclusive data obtained concurrently with exclusive data more demanding in stats).
- •With polarized NH₃ and ³He targets: 5% systematics (experimental only, i.e., not counting low-x uncertainty)
- •Low-x issue mitigated because
 - Expected EIC data complement JLab data;
 - Intermediate Q^2 : small missing low-x contribution.
- •Fitting simulated Bjorken sum data yields: $\Delta \alpha_s / \alpha_s \simeq 6.1 \times 10^{-3}$ $\pm 4.2 \text{(uncor.)} \pm 3.6 \text{(cor.)} \pm 2.6 \text{(theo.)} \times 10^{-3}$

- •Same exercise with EIC yields $\Delta \alpha_s / \alpha_s \gtrsim 1.3 \%$. Yet, EIC data required to
- minimize the low-x uncertainty of JLab's determination.
- Compared to EIC & 3 most precise experimental determinations in PDC EIC alone JLab@22 GeV+EIC NNPDF31 Abbate (T) Verbytskyi (2j) 0.110 0.125 0.120 0.130 0.115 $\alpha_s(M_7^2)$

•One extraction from Lab@22 GeV can yield α_s with greater accuracy than world data combined. It is just one possibility to access α_s with JLab@22 GeV. Others, e.g., global fits of (un)polarized PDFs may also provide competitive determinations.

Two possibilities to extract α_s from the Bjorken sum rule:

- •Previous slides: Measurement of Q^2 -dependence of $\Gamma_1^{p-n}(Q^2)$.
 - •Need Γ_1^{p-n} at several Q^2 points. Only one (or a few) value of $\alpha_{s.}$
 - •Good accuracy.

Two possibilities to extract α_s from the Bjorken sum rule:

- •Previous slides: Measurement of Q^2 -dependence of $\Gamma_1^{p-n}(Q^2)$.
 - •Need Γ_1^{p-n} at several Q^2 points. Only one (or a few) value of $\alpha_{s.}$
 - •Good accuracy.

Or

•Do an absolute measurement of $\Gamma_1^{p-n}(Q^2)$ and solve the Bj SR for $\alpha_s(Q^2)$: $\Gamma_1^{p-n}(Q^2) = \frac{1}{6}g_A\left[1 - \frac{\alpha_s}{\pi}\cdots\right]$

Two possibilities to extract α_s from the Bjorken sum rule:

- •Previous slides: Measurement of Q^2 -dependence of $\Gamma_1^{p-n}(Q^2)$.
 - •Need Γ_1^{p-n} at several Q^2 points. Only one (or a few) value of $\alpha_{s.}$
 - •Good accuracy.

Or

- •Do an absolute measurement of $\Gamma_1^{p-n}(Q^2)$ and solve the Bj SR for $\alpha_s(Q^2)$: $\Gamma_1^{p-n}(Q^2) = \frac{1}{6}g_A \left[1 \frac{\alpha_s}{\pi} \cdots \right]$
 - •One α_s per Γ_1^{p-n} experimental data point.
 - •Lower systematic accuracy makes this not competitive for $\alpha_s(M_z)$.
 - •Small uncorrelated uncertainty (Q^2 -dependence) provides good relative $\alpha_s(Q^2)$ mapping.

Two possibilities to extract α_s from the Bjorken sum rule:

- •Previous slides: Measurement of Q^2 -dependence of $\Gamma_1^{p-n}(Q^2)$.
 - •Need Γ_1^{p-n} at several Q^2 points. Only one (or a few) value of $\alpha_{s.}$
 - •Good accuracy.

Or

- •Do an absolute measurement of $\Gamma_1^{p-n}(Q^2)$ and solve the Bj SR for $\alpha_s(Q^2)$: $\Gamma_1^{p-n}(Q^2) = \frac{1}{6}g_A \left[1 \frac{\alpha_s}{\pi} \cdots \right]$
 - •One α_s per Γ_1^{p-n} experimental data point.
 - •Lower systematic accuracy makes this not competitive for $\alpha_s(M_z)$.
 - •Small uncorrelated uncertainty (Q^2 -dependence) provides good relative $\alpha_s(Q^2)$ mapping.

⇒Sensitivity to high-order QCD loops not yet been measured

Measuring $\alpha_{\rm s}(Q)$

 $Q^2 < 5.4 \text{ GeV}^2$: start being sensitive to NⁿLO

 $Q^2 < 5.4 \text{ GeV}^2$: start being sensitive to NⁿLO

Unique direct sensitivity to NⁿLO.

Despite higher accuracy, large Q^2 world data never sensitive to it. (Also, often: single point measurement.)

 $Q^2 < 5.4 \text{ GeV}^2$: start being sensitive to NⁿLO

Unique direct sensitivity to NⁿLO.

Despite higher accuracy, large Q^2 world data never sensitive to it. (Also, often: single point measurement.)

pQCD Q^2 -dependence has already been tested beyond LO using various observables. This test isolates loop effects.

Back-up slides

Bjorken sum rule

$$\Gamma_{1}^{p-n} \equiv \int g_{1}^{p-n} dx = \frac{1}{6} g_{A} \left[1 - \frac{\alpha_{s}}{\pi} - 3.58 \left(\frac{\alpha_{s}}{\pi} \right)^{2} - 20.21 \left(\frac{\alpha_{s}}{\pi} \right)^{3} - 175.7 \left(\frac{\alpha_{s}}{\pi} \right)^{4} - \sim 893 \left(\frac{\alpha_{s}}{\pi} \right)^{5} \right] + \frac{M^{2}}{O^{2}} \left[a_{2}(\alpha_{s}) + 4d_{2}(\alpha_{s}) + 4f_{2}(\alpha_{s}) \right] - 4d_{2}(\alpha_{s}) + 4d_{2}(\alpha_{s}) + 4d_{2}(\alpha_{s}) + 4d_{2}(\alpha_{s}) + 4d_{2}(\alpha_{s}) \right] - 4d_{2}(\alpha_{s}) + 4d_{2}$$

Nucleon's First spin structure function Nucleon axial charge. (Value of $\Gamma_1^{p-n}(Q^2)$ in the $Q^2 \to \infty$ limit)

pQCD radiative corrections (\overline{MS} Scheme.)

+ $\frac{M^2}{Q^2}$ $\left[a_2(\alpha_s) + 4d_2(\alpha_s) + 4f_2(\alpha_s)\right] + \dots$ ne.)

Non-perturbative 1/Q²ⁿ

power corrections.

(+rad. corr.)

- \Rightarrow Two possibilities to extract $\alpha_s(M_Z)$:
 - •Do an absolute measurement of $\Gamma_1^{p-n}(Q^2)$ and solve the Bj SR for $\alpha_s(Q^2)$.

•One α_s per Γ_1^{p-n} experimental data point.

The Bj SR allows to extract $\alpha_s(Q^2)$ at all scale!

•Poor systematic accuracy, typically $\Delta \alpha_s / \alpha_s \sim 10\%$ at high energy $\stackrel{\text{Q (GeV)}}{\Rightarrow}$ Not competitive.

Bjorken sum rule

$$\Gamma_{1}^{p-n} \equiv \int g_{1}^{p-n} dx = \frac{1}{6} g_{A} \left[1 - \frac{\alpha_{s}}{\pi} - 3.58 \left(\frac{\alpha_{s}}{\pi} \right)^{2} - 20.21 \left(\frac{\alpha_{s}}{\pi} \right)^{3} - 175.7 \left(\frac{\alpha_{s}}{\pi} \right)^{4} - \sim 893 \left(\frac{\alpha_{s}}{\pi} \right)^{5} \right]$$

$$+ \frac{M^{2}}{Q^{2}} \left[a_{2}(\alpha_{s}) + 4d_{2}(\alpha_{s}) + 4f_{2}(\alpha_{s}) \right] + \dots$$
Nucleon's Nucleon axial charge. (Value of $\Gamma_{1}^{p-n}(Q^{2})$ in the function $Q^{2} \rightarrow \infty$ limit)

$$Q^{2} \rightarrow \infty$$
 limit)

Non-perturbative 1/Q²ⁿ power corrections.

- \Rightarrow Two possibilities to extract $\alpha_s(M_Z)$:
 - •Do an absolute measurement of $\Gamma_1^{p-n}(Q^2)$ and solve the Bj SR for $\alpha_s(Q^2)$.
 - •One α_s per Γ_1^{p-n} experimental data point.
 - •Poor systematic accuracy, typically $\Delta \alpha_s / \alpha_s \sim 10\%$ at high energy \Rightarrow Not competitive.
 - •Measurement of Q^2 -dependence of $\Gamma_1^{p-n}(Q^2)$.
 - •Need Γ_1^{p-n} at several Q^2 points. Only one (or a few) value of $\alpha_{s.}$
 - •Good accuracy: 1990's CERN/SLAC data yielded: $\alpha_s(M_Z)=0.120\pm0.009$

Altarelli, Ball, Forte, Ridolfi, Nucl. Phys. B496 337 (1997)

function

power corrections.

(+rad. corr.)

Bjorken sum rule at JLab@22 GeV

- •Statistical uncertainties are expected to be negligible:
 - •JLab is a high-luminosity facility;
 - •A JLab@22 GeV program would include polarized DVCS and TMD experiments. Those imply long running times compared to those needed for inclusive data gathering;
 - •High precision data already available from 6 GeV and 12 GeV for the lower Q^2 bins and moderate x.
- •Looking at the 6 GeV CLAS EG1dvcs data, required statistics for DVCS and TMD experiments imply statistical uncertainties < 0.1% on the Bjorken sum. For the present exercise we will use 0.1% on all Q^2 -points with Q^2 -bin sizes increasing exponentially with Q^2 .
- •Use 6% for experimental systematics (i.e. not including the uncertainty on unmeasured low-x).
 - •Nuclear corrections:
 - •D: negligible assuming we can tag the ~spectator proton
 - •3He: 2% (5% on n, which contribute to 1/3 to the Bjorken sum: $5\%/3 \approx 2\%$)
 - •Polarimetries: Assume ΔP_{e} - ΔP_{N} = 3%.
 - •Radiative corrections: 1%
 - • F_1 to form g_1 from A_1 : 2%
 - • g_2 contribution to longitudinal asym: Negligible, assuming it will be measured.
 - •Dilution/purity:
 - •Bjorken sum from P & D: 4%
 - •Bjorken sum from P & ³He: 3%
 - •Contamination from particle miss-identification: Assumed negligible.
 - •Detector/trigger efficiencies, acceptance, beam currents: Neglected (asym).

Adding in quadrature: ~5%

Under these assumptions:

Comparison with EIC

Low-x uncertainty

- •For the Q^2 bins covered by EIC, global fits will be available up to the lowest x covered by EIC.
 - \Rightarrow assume 10% uncertainty on that missing (for the JLab measurement) low-x part.

Assume 100% for the very small-x contribution not covered by EIC.

- •For the 5 lowest Q^2 bins not covered by EIC:
 - •Bin #5 close to the EIC coverage \Rightarrow Constrained extrapolation, assume 20% uncertainty on missing low-x part.
 - •Bin #4, assume 40% uncertainty, Bin #3, assume 60%, Bin #2, assume 80%, Bin #1, assume 100%.

Bjorken sum rule at JLab@22 GeV (meas.+low-x)

Extraction of $\alpha_{\rm s}(M_{\rm Z})$

• Main fit function: Bjorken sum approximant at N⁴LO+twist-4, with α_s at 4-loop (i.e. β_3), for main result.

$$\alpha_s^{\overline{\text{MS}}}(Q) = \frac{4\pi}{\beta_0 \ln(Q^2/\Lambda_s^2)} \left[1 - \frac{\beta_1}{\beta_0^2} \frac{\ln(\ln(Q^2/\Lambda_s^2))}{\ln(Q^2/\Lambda_s^2)} + \frac{\beta_1^2}{\beta_0^4 \ln^2(Q^2/\Lambda_s^2)} \left(\ln^2(\ln(Q^2/\Lambda_s^2)) - \ln(\ln(Q^2/\Lambda_s^2)) - 1 + \frac{\beta_2 \beta_0}{\beta_1^2} \right) + \frac{\beta_1^3}{\beta_0^6 \ln^3(Q^2/\Lambda_s^2)} \left(-\ln^3(\ln(Q^2/\Lambda_s^2)) + \frac{5}{2} \ln^2(\ln(Q^2/\Lambda_s^2)) + 2 \ln(\ln(Q^2/\Lambda_s^2)) - \frac{1}{2} - 3 \frac{\beta_2 \beta_0}{\beta_1^2} \ln(\ln(Q^2/\Lambda_s^2)) + \frac{\beta_3 \beta_0^2}{2\beta_1^3} \right) + \frac{\beta_1^4}{\beta_0^8 \ln^4(Q^2/\Lambda_s^2)} \left(\ln^4(\ln(Q^2/\Lambda_s^2)) - \frac{13}{3} \ln^3(\ln(Q^2/\Lambda_s^2)) - \frac{3}{2} \ln^2(\ln(Q^2/\Lambda_s^2)) + 4 \ln(\ln(Q^2/\Lambda_s^2)) + \frac{7}{6} + \frac{3\beta_2 \beta_0}{\beta_1^2} \left(2 \ln^2(\ln(Q^2/\Lambda_s^2)) - \ln(\ln(Q^2/\Lambda_s^2)) - 1 \right) - \frac{\beta_3 \beta_0^2}{\beta_1^3} \left(2 \ln(\ln(Q^2/\Lambda_s^2)) + \frac{1}{6} \right) \right]$$

Extraction of $\alpha_{\rm s}(M_{\rm Z})$

Fit and procedure:

• Main fit function: Bjorken sum approximant at N⁴LO+twist-4, with α_s at 4-loop (i.e. β_3), for main result.

$$C_1^{p-n} = \frac{1}{6}g_A \left[1 - \frac{\alpha_s}{\pi} - 3.58 \left(\frac{\alpha_s}{\pi} \right)^2 - 20.21 \left(\frac{\alpha_s}{\pi} \right)^3 - 175.7 \left(\frac{\alpha_s}{\pi} \right)^4 \right] + \frac{M^2}{Q^2} \left[a_2(\alpha_s) + 4d_2(\alpha_s) + 4f_2(\alpha_s) \right]$$

- Secondary fit at N³LO+twist-4 and α_s at 3-loop, for pQCD truncation uncertainty. • Systematically vary fit Q^2 range to minimize total
- uncertainty: Low Q^2 points have high α_s sensitivity but produce larger pQCD truncation error. High Q^2 points have smaller α_s sensitivity and larger experimental systematic uncertainty but smaller pQCD error. ⇒May not be worth including the lowest and/or highest Q^2 points. (Using all points for statistics sake is not worth it, since stat. error is negligible.)

10

- 1. Λ_s is the free parameter of interest. From it, we obtain $\alpha_{\rm s}(M_{\rm z})$.
- 2. Twist-4: free fit parameter.

 $Q^2 (GeV^2)$

Extraction of $\alpha_s(M_Z)$

