Pion Parton Distributions at 22 GeV

Patrick Barry, Argonne National Lab Jefferson Lab 22 GeV Open Discussion November 18, 2024

Studying hadron structure

Should we only study the structure of protons to learn about QCD? *NO!*

- Mesons offer importance of emergent phenomena of QCD such as
 - How is mass generated?
 - How do quarks and gluons arrange themselves within hadrons?
 - Why is there confinement?
- Allows for another probe of confinement scales in quark-gluon bound systems

Questions in meson structure

- 1. How to test universality of PDFs?
- 2. What is the gluonic content of pions compared with protons?
- 3. What is the transverse momentum structure of pions, and how does it relate to confinement scales?

Accessing pions indirectly

- Exchange of pions among nucleons keep the nucleus intact
- Model the nucleon as having a "cloud of pions"

Leading Neutron (LN) electroproduction

Available datasets for pion structures

Pion PDFs in JAM

1. How to test universality of pion PDFs?

- The tagged deep inelastic scattering (TDIS) program at JLab offers overlapping kinematics with DY
- But how reliable are these kinematics with 11 GeV? resonance region

Meson	Mass~(MeV)	Decay width (MeV)
ρ	775.26 ± 0.23	149.1 ± 0.8
b_1	1229.5 ± 3.2	142 ± 9
a_1	1230 ± 40	425 ± 175
a_2	1318.2 ± 0.6	107 ± 5
$\pi(1670)$	$1670.6\substack{+2.9\\-1.2}$	258^{+8}_{-9}

Current 11 GeV TDIS kinematics

• Plotting available 11 GeV TDIS kinematics with a few representative W_{π} curves

Kinematics with 22 GeV

• We keep some data points above the $W_{\pi} = 2$ GeV cut

Impact on pion PDFs with 22 GeV

- Knowledge of pion PDFs increases dramatically with 22 GeV beam
- Assuming 1.2% systematic uncertainty and 200 days of data-taking

2. Gluonic content of the pion

- The gluon has sensitivity to F_2^{π} at next-to-leading order (NLO)
- However, it comes in at leading order (LO) for F_L^{π}
- If we can perform L-T separation in regions of kinematics, we may be able to access g_π
- Because the ρ meson does not contribute to F_L , we analyze the region in $2m_\pi < W_\pi < 1~{\rm GeV}$

Impact of F_L studies

- We look only at 11 GeV kinematics that overlap with 8.8 GeV beam kinematics
- Reduction in the gluon uncertainty at large x

3. Transverse momentum structure

Relation to k_T -space TMD

 $ilde{f}_{q/\mathcal{N}}(x,b_T) = (2\pi)^2 \int d^2 oldsymbol{k}_T e^{-ioldsymbol{b}_T\cdotoldsymbol{k}_T} f_{q/\mathcal{N}}(x,k_T)$

$$ilde{f}_{q/\mathcal{N}}(b_T|x;Q,Q^2) \equiv rac{ ilde{f}_{q/\mathcal{N}}(x,b_T;Q,Q^2)}{\int \mathrm{d}^2 oldsymbol{b}_T ilde{f}_{q/\mathcal{N}}(x,b_T;Q,Q^2)} \cdot \cdot$$

- Broadening in b_T -space appearing as x increases \Rightarrow Narrowing in k_T -space
- Up quark in pion is narrower than up quark in proton in b_T -space \Rightarrow Broader in k_T -space

Pion SIDIS: access to TMDs

 $eN \rightarrow e'N'\pi X$

- Measure an outgoing pion in the TDIS experiment
- Gives us another observable sensitive to pion TMDs
 - Needed for tests of universality

Available kinematics for JLab

Can only use 22 GeV data for any TMD analysis

Conclusion

- Impacts from the 11 GeV TDIS experiment on pion PDFs will be limited
- Tests of universality in "clean" DIS regions are needed at 22 GeV
- The 11 GeV TDIS can map out the low- W_{π} resonance region and may allow for F_L constraints
- SIDIS at 22 GeV can offer another observable for pion TMDs

Backup Slides

EIC vs JLab 22 GeV

 JLab measurements will be much more precise with a 200 day beam run – luminosity plays a big role

Testing systematics of the Sullivan process

• We look to $pp \rightarrow nX$ data as well

- Here, sensitive as well to the $f_{\pi N}$ splitting function
 - Additional observable to test the universality

Data and theory comparisons

• Perform cut on $|t| < 0.1 \text{ GeV}^2$

Resulting splitting function

• Agrees with the prior within the uncertainty bands

Resulting χ^2 for the $pp \rightarrow nX$ data

- All models as a function of the cut on |t|
- |t|_{max} = 0.1 GeV² is ideal as it gives good description of data for all models

JAM analysis with threshold resummation

Pion PDFs from lattice + experimental data

• The inclusion of lattice QCD data along with experimental data can also help us to reveal pion structure

Check the resonance regions

$$I^{G}(J^{P}) = 1^{-}(0^{-})$$

Mass $m = 139.57039 \pm 0.00018$ MeV (S = 1.8) Mean life $\tau = (2.6033 \pm 0.0005) \times 10^{-8}$ s (S = 1.2) $c\tau = 7.8045$ m

$$I(J^{PC}) = 0.1(1^{-1})$$

 $\begin{array}{ll} \text{Mass } m < \ 1 \times 10^{-18} \ \text{eV} \\ \text{Charge } q < \ 1 \times 10^{-46} \ e & (\text{mixed charge}) \\ \text{Charge } q < \ 1 \times 10^{-35} \ e & (\text{single charge}) \\ \text{Mean life } \tau = \text{Stable} \end{array}$

Full width Γ Γ _{ee} = 7.04 ±	$=$ 149.1 \pm 0. = 0.06 keV).8 MeV
<i>b</i> ₁ (1235)	I G	$G(J^{PC}) = 1^+(1^{+})$
Mass $m = 122^{\circ}$ Full width $\Gamma =$	9.5 ± 3.2 MeV 142 ± 9 MeV	(S = 1.6) (S = 1.2)
a2(1	320)	$I^{G}(J^{PC}) = 1^{-}(2^{+})$

ρ(770)

See the note in $\rho(770)$ Particle Listings.

Mass $m = 775.26 \pm 0.25$ MeV

Mass $m = 1316.9 \pm 0.9$ MeV (S = 1.9) Full width $\Gamma = 107 \pm 5$ MeV ^[j]

 $I^{G}(J^{PC}) = 1^{+}(1^{-})$

The quantum numbers of a charged π and photon result in specific outgoing mesons

Resonances

• Possible low-lying resonances from $\gamma^*\pi$

Kinematics of Sullivan-variables

• Cuts on the $pp \rightarrow nX$ data at $|t| > 0.1 \text{ GeV}^2$

Definition of W_{π}^2

• Derived from kinematics

$$W_{\pi}^{2} = t - Q^{2} \left(1 - \frac{\bar{x}_{L}}{x} \right) = t - Q^{2} \left(1 - \frac{1}{x_{\pi}} \right).$$

Impact study details

• We created pseudodata in the form of

$$R^{\rm T} = \frac{\mathrm{d}^4 \sigma(eN \to e'N'(\Lambda)X)}{\mathrm{d}x \mathrm{d}Q^2 \mathrm{d}x_L \mathrm{d}t} / \frac{\mathrm{d}^2 \sigma(eN \to e'X)}{\mathrm{d}x \mathrm{d}Q^2} \Delta x_L \Delta t$$

• We used a luminosity of: $d\mathcal{L}/dt - 5 \times 10^{38}/\text{cm}^2/\text{s}$

Use of
$$W^2$$
 for SIDIS

The unobserved invariant mass-squared in inclusive DIS is

$$W_{\rm tot}^2 = M^2 + \frac{Q^2(1 - x_{\rm Bj})}{x_{\rm Bj}}.$$
 (6.26)

In SIDIS it is

$$W_{\text{SIDIS}}^{2} = M^{2} + M_{\text{B}}^{2} + \frac{Q^{2}(1 - x_{\text{Bj}} - z_{\text{h}})}{x_{\text{Bj}}} + \frac{Q^{4}z_{\text{h}}\left(\sqrt{1 + \frac{4M^{2}x_{\text{Bj}}^{2}}{Q^{2}}}\sqrt{1 - \frac{4M^{2}x_{\text{Bj}}^{2}M_{\text{B},\text{T}}}{z_{\text{h}}^{2}Q^{4}}} - 1\right)}{2M^{2}x_{\text{Bj}}^{2}}$$
$$\stackrel{M,M_{\text{B}} \to 0}{=} \frac{Q^{2}(1 - x_{\text{Bj}})(1 - z_{\text{h}})}{x_{\text{Bj}}} - \frac{\mathbf{P}_{\text{B},\text{T}}^{2}}{z_{\text{h}}}.$$
(6.27)

• Replace M^2 with t

Average
$$b_T$$

• The conditional expectation value of b_T for a given x

$$\langle b_T | x \rangle_{q/\mathcal{N}} = \int \mathrm{d}^2 \boldsymbol{b}_T \, b_T \, \tilde{f}_{q/\mathcal{N}}(b_T | x; Q, Q^2)$$

 Shows a measure of the transverse correlation in coordinate space of the quark in a hadron for a given x

Brief words on kaon TDIS

- Sullivan process applies, but a hyperon must be tagged
- Consider again, not only inclusive W^2 but W_K^2

Kinematics for 11 GeV Kaon TDIS

• Beware of such large |t| further away from kaon pole

Kinematics for 22 GeV Kaon TDIS

Accepting of more points at smaller |k|

Resonance from K^*

• The K^* resonance is much more narrow than for ρ meson

•
$$W_{K,\max}^2 = 1 \text{ GeV}^2$$

