

Why do we care?

- The π^+ form factor is our best hope of observing experimentally QCD's transition from soft QCD to hard QCD
 - This transition is expected to occur at a much lower Q² than for the proton
- K⁺ form factor:
 - How does meson structure change when s quark is substituted for d quark?
 - At what Q^2 will the K⁺ to π^+ form factor ratio converge to the value predicted by QCD?
- The normalization of π^+ and K⁺ form factors at high Q² is sensitive to quark and gluon energy contributions to emergent hadronic mass
 - A comparison of π^+ and K⁺ form factors over a wide range of Q² will provide unique information relevant to our understanding of hadronic mass generation

Measurement of π^+ Form Factor – Larger Q^2

At larger Q^2 , F_{π} must be measured indirectly using the "pion cloud" of the proton via pion electroproduction $p(e,e'\pi^+)n$

$$|p\rangle = |p\rangle_0 + |n\pi^+\rangle + \dots$$

- At small -t, the pion pole process dominates the longitudinal cross section, σ_l
- In Born term model, F_{π}^{2} appears as,

$$\frac{d\sigma_L}{dt} \propto \frac{-tQ^2}{(t-m_\pi^2)} g_{\pi NN}^2(t) F_\pi^2(Q^2,t)$$

Drawbacks of this technique

- 1. Isolating σ_{L} experimentally challenging
- 2. Theoretical uncertainty in form factor extraction.

 K^+ pole is further in the unphysical region, uncertainties will be larger

Experimental Issues

What is being measured?

- Scattered electron and π⁺/K⁺ in coincidence with the two high performance spectrometers in Hall C
 - High momentum, forward angle (5.5°) meson detection is required, with good Particle ID to separate π^+ , K^+ , p
 - Good momentum resolution required to reconstruct crucial kinematics, such as M_{miss}, Q², W, t
 - Need to measure the longitudinal cross section $d\sigma_L/dt$ needed for form factor extraction

The role of 22 GeV electrons?

- Allows access to higher Q²
- Expanded range of virtual photon polarization $\Delta \varepsilon = (\varepsilon_{HI} \varepsilon_{LO})$, leading to reduced errors in the extraction of $d\sigma_I/dt$
 - Uncertainty in $\sigma_L \sim 1/\Delta \varepsilon$, desire $\Delta \varepsilon > 0.2$, preferably larger

Upgrade Scenarios Considered

Phase 1: higher energy beam, keep HMS+SHMS largely as is, with relatively small DAQ and PID upgrades

- See what can be accomplished in "cost effective approach"
- Goal: to extend kinematic range of L/T–separated measurements beyond what is possible with JLab 11 GeV beam

Phase 2: Replace HMS with a new Very High Momentum Spectrometer (VHMS) to enable measurements utilizing full 22 GeV beam energy

 See what extra physics can be obtained for significantly larger investment

Phase 1: Form Factor Projections

- 7.2 GeV/c HMS & 11.0 GeV/c SHMS allow a lot of kinematic flexibility, with no major upgrades
 - Success depends on good K^+/π^+ separation in SHMS at high momenta, likely requires a modest aerogel detector upgrade
 - Experiment could be done as soon as beam energy is available!
 - Maximum beam energy and higher Q² reach constrained by sum of HMS+SHMS maximum momenta
- $lacktriangleright F_{\pi}$ assumes same statistics as acquired in PionLT experiment
- Inner error bar is projected statistical and systematic error
- Outer error bar also includes a model uncertainty in the form factor extraction, added in quadrature

Phase 2 Scenario: π^+ Form Factor

■Replace HMS with VHMS for π^+ , use SHMS for e'

- ■Assume θ_{min} =5.5°, θ_{open} =15.0°
- ■VHMS: ΔΩ, ΔP/P similar SHMS
- P_{VHMS}=15.0 GeV/c is sufficient, constrained by max beam energy
- θ_{VHMS}~5.5° allows improved Δε, but does not affect maximum Q² reach
- Dramatic increase in upper Q²
 11.5 → 15.0 GeV²
- Error bars for Q²=8.5–11.5 GeV² substantially decrease due to smaller $-t_{min}$ (better $R=\sigma_T/\sigma_L$) and shorter running times
- Highest Q² running time is "expensive" but would have very high scientific priority.

- Extends region of high quality F_{π} values to Q²=13 GeV²
- Somewhat larger errors to Q²=15 GeV²
- lacktriangle Provides MUCH improved overlap of F_π data set between JLab and EIC

JLab L-T Separations in the EIC Era

- Hall C is world's only facility that can do L–T separations over a wide kinematic range
- The error magnification in L—T separations depends crucially on the achievable difference in the virtual photon polarization parameter, ε.
 - Errors magnify as $1/\Delta ε$, where $\Delta ε = ε_{High} ε_{Low}$
 - To keep the magnification <500%, one desires $\Delta \varepsilon$ >0.2
 - This is not feasible at the EIC, as the high ion ring energy constrains ε>0.98
- As the interpretation of some EIC data (e.g. GPD extraction) will depend on extrapolation of Hall C L-T separated data, maximizing overlap between Hall C and EIC data sets should be a high priority
 - An important motivation for extending reach of Hall C data using 22 GeV beam

Charged Pion Form Factor

- The pion is attractive as a QCD laboratory:
- Simple, 2 quark system

■The important question to answer is: What is the structure of the π^+ at all Q^2 ?

A program of study unique to Jefferson Lab Hall C (until the completion of the EIC)

Meson Form Factors

Simple $q\bar{q}$ valence structure of mesons presents the ideal testing ground for our understanding of bound quark systems.

In quantum field theory, the form factor is the overlap integral:

$$F_{\pi}(Q^2) = \int \phi_{\pi}^*(p)\phi_{\pi}(p+q)dp$$

The meson wave function can be separated into φ_{π}^{soft} with only low momentum contributions ($k < k_0$) and a hard tail φ_{π}^{hard} .

While $\varphi_{\pi}^{\ \ hard}$ can be treated in pQCD, $\varphi_{\pi}^{\ \ soft}$ cannot.

From a theoretical standpoint, the study of the Q^2 -dependence of the form factor focuses on finding a description for the hard and soft contributions of the meson wave-function.

A program of study unique to Hall C (until completion of EIC)

pQCD and the Charged Pion Form Factor

At large Q^2 , perturbative QCD (pQCD) can be used

$$F_{\pi}(Q^2) = \frac{4\pi C_F \alpha_S(Q^2)}{Q^2} \left| \sum_{n=0}^{\infty} a_n \left(\log \left(\frac{Q^2}{\Lambda^2} \right) \right)^{-\gamma_n} \right|^2 \left[1 + O\left(\alpha_S(Q^2), \frac{m}{Q} \right) \right]$$

at asymptotically high Q^2 , only the hardest portion of the wave function remains

$$\phi_{\pi}(x) \underset{\mathcal{Q}^2 \to \infty}{\longrightarrow} \frac{3f_{\pi}}{\sqrt{n_c}} x(1-x)$$

and F_{π} takes the very simple form

$$F_{\pi}(Q^2) \underset{Q^2 \to \infty}{\longrightarrow} \frac{16\pi\alpha_s(Q^2)f_{\pi}^2}{Q^2}$$

G.P. Lepage, S.J. Brodsky, Phys.Lett. **87B**(1979)359

where f_{π} =92.4 MeV is the $\pi^+ \rightarrow \mu^+ \nu$ decay constant.

This prediction only relies on asymptotic freedom in QCD, i.e. $(\partial \alpha_s/\partial \mu) < 0$ as $\mu \rightarrow \infty$

Pion Form Factor at Finite Q²

- At finite momentum transfer, higher order terms contribute.
- Calculation of higher order, "hard" (short distance) processes difficult, but tractable.

Q^2F_{π} should behave like $\alpha_s(Q^2)$ even for moderately large Q^2 .

→ Pion form factor seems to be best tool for experimental study of nature of the quark-gluon coupling constant renormalization. [A.V. Radyushkin, JINR 1977, arXiv:hep-ph/0410276]

Contrasts in Hadron Mass Budgets

Stark Differences between proton, K^+ , π^+ mass budgets

- Due to Emergent Hadronic Mass (EHM), Proton mass large in absence of quark couplings to Higgs boson (chiral limit).
- Conversely, and yet still due to EHM and DCSB, K and π are massless in chiral limit (i.e. they are Goldstone bosons of QCD).
- The mass budgets of these crucially important particles demand interpretation.
- Equations of QCD stress that any explanation of the proton's mass is incomplete, unless it simultaneously explains the light masses of QCD's Goldstone bosons, the π and K.

Synergy: Emergent Mass and π^+ Form Factor

At empirically accessible energy scales, π^+ form factor is sensitive to emergent mass scale in QCD

- Two dressed—quark mass functions distinguished by amount of DCSB
 - DCSB emergent mass generation is 20% stronger in system characterized by solid green curve, which is more realistic case

- r_{π} =0.66 fm with solid green curve
- r_{π} =0.73 fm with solid dashed blue curve
- $F_{\pi}(Q^2)$ predictions from QCD hard scattering formula, obtained with related, computed pion PDAs
- QCD hard scattering formula, using conformal limit of pion's twist–2 PDA

The Charged Kaon – a 2nd QCD test case

 In the hard scattering limit, pQCD predicts that the π⁺ and K⁺ form factors will behave similarly

$$\frac{F_K(Q^2)}{F_\pi(Q^2)} \xrightarrow{Q^2 \to \infty} \frac{f_K^2}{f_\pi^2}$$

■ It is important to compare the magnitudes and Q²—dependences of both form factors.

K⁺ properties also strongly influenced by EHM

■ K⁺ PDA also is broad, concave and asymmetric.

■ While the heavier *s* quark carries more bound state momentum than the *u* quark, the shift is markedly less than one might naively expect based on the difference of *u*, *s* current quark masses.

Experimental Issues

- Deep Exclusive Meson Production (DEMP) cross section is small, can exclusive $p(e,e'\pi^+)n$ and $p(e,e'K^+)\Lambda$ channels be cleanly identified?
 - High momentum, forward angle (5.5°) meson detection is required, with good Particle ID to separate π^+ , K^+ , p
 - Good momentum resolution required to reconstruct crucial kinematics, such as M_{miss} , Q^2 , W, t
 - Need to measure the longitudinal cross section $d\sigma_L/dt$ needed for form factor extraction

Hall C of
Jefferson Lab
has been
optimized for
specifically
such studies

Hall C during Data Taking

 π^+/K^+ FF experiments have challenging forward angle requirements

p(e,e'π⁺)n Event Selection

Coincidence measurement between charged pions in SHMS and electrons in HMS

Easy to isolate exclusive channel

- Excellent particle identification
- CW beam minimizes
 "accidental" coincidences
- Missing mass resolution easily excludes 2–pion z contributions

PionLT experiment E12–19–006 Data Q^2 =1.60, W=3.08, x= 0.157, ε=0.685 E_{beam} =9.177 GeV, P_{SHMS} =+5.422 GeV/c, $θ_{SHMS}$ = 10.26° (left) Plots by Muhammad Junaid

$$2\pi \frac{d^2\sigma}{dt d\phi} = \varepsilon \frac{d\sigma_L}{dt} + \frac{d\sigma_T}{dt} + \sqrt{2\varepsilon(\varepsilon+1)} \frac{d\sigma_{LT}}{dt} \cos\phi + \varepsilon \frac{d\sigma_{TT}}{dt} \cos 2\phi$$

University

- L-T separation required to separate σ_L from σ_T
- Need to take data at smallest available -t, so σ_L has maximum contribution from the π^+ pole
- Need to measure *t*—dependence of σ_L at fixed Q^2 , W

L/T-separation error propagation

Error in $d\sigma_L/dt$ is magnified by $1/\Delta \varepsilon$, where $\Delta \varepsilon = (\varepsilon_{Hi} - \varepsilon_{Low})$

 \rightarrow To keep magnification factor <5x, need $\Delta \epsilon$ >0.2, preferably more!

$$\frac{d^{2}\sigma}{dt\,d\phi} = \varepsilon \frac{d\sigma_{L}}{dt} + \frac{d\sigma_{T}}{dt} + \sqrt{2\,\varepsilon\,(\varepsilon+1)} \frac{d\sigma_{LT}}{dt} \cos\phi_{\pi} + \varepsilon \frac{d\sigma_{TT}}{dt} \cos2\phi_{\pi}$$

$$\frac{\Delta\sigma_{L}}{\sigma_{L}} = \frac{1}{\left(\varepsilon_{1} - \varepsilon_{2}\right)} \left(\frac{\Delta\sigma}{\sigma}\right) \sqrt{\left(R + \varepsilon_{1}\right)^{2} + \left(R + \varepsilon_{2}\right)^{2}} \qquad \text{where } R = \frac{\sigma_{T}}{\sigma_{L}}$$

$$\frac{\Delta\sigma_{T}}{\sigma_{T}} = \frac{1}{\left(\varepsilon_{1} - \varepsilon_{2}\right)} \left(\frac{\Delta\sigma}{\sigma}\right) \sqrt{\varepsilon_{1}^{2} \left(1 + \frac{\varepsilon_{2}}{R}\right)^{2} + \varepsilon_{2}^{2} \left(1 + \frac{\varepsilon_{1}}{R}\right)^{2}}$$

The relevant quantities for F_{π} extraction are R and $\Delta \varepsilon$

$$\frac{d\sigma_L}{dt} \propto \frac{-tQ^2}{(t-m_\pi^2)} g_{\pi NN}^2(t) F_\pi^2(Q^2,t)$$

Extract $F_{\pi}(Q^2)$ from JLab σ_L data

Model incorporates π^+ production mechanism and spectator neutron effects:

VGL Regge Model:

■ Feynman propagator $\left(\frac{1}{t - m_{\pi}^2}\right)$

replaced by π and ρ Regge propagators.

- Represents the exchange of a <u>series</u> of particles, compared to a <u>single</u> particle.
- Free parameters: Λ_{π} , Λ_{ρ} (trajectory cutoff)

[Vanderhaeghen, Guidal, Laget, PRC 57(1998)1454]

■ At small -t, σ_L only sensitive to F_{π}

$$F_{\pi} = \frac{1}{1 + Q^2 / \Lambda_{\pi}^2}$$

Fit to σ_L to model gives F_{π} at each Q^2

Error bars indicate statistical and random (pt-pt) systematic uncertainties in quadrature.

Yellow band indicates the correlated (scale) and partly correlated (t-corr) systematic uncertainties.

 $\Lambda_{\pi}^2 = 0.513$, 0.491 GeV², $\Lambda_{\rho}^2 = 1.7$ GeV².

Current and Projected F_{π} Data

SHMS+HMS will allow measurement of F_{π} to much higher Q^2 .

No other facility worldwide can perform this measurement.

The pion form factor is the clearest test case for studies of QCD's transition from nonperturbative to perturbative regions.

The ~17% measurement of F_{π} at Q^2 =8.5 GeV² is at higher $-t_{min}$ =0.45 GeV²

E12–19–006: D. Gaskell, T. Horn and G. Huber, spokespersons

Projected Uncertainties for K⁺ Form Factor

- First measurement of F_K well above the resonance region.
- Measure form factor to Q²=3 GeV² with good overlap with elastic scattering data.
 - Limited by –t<0.2 GeV² requirement to minimize non–pole contributions.
- Data will provide an important second $q\overline{q}$ system for theoretical models, this time involving a strange quark.

E12–09–011: T. Horn, G. Huber and P. Markowitz, spokespersons

Phase 1 Scenario: π^+ Form Factor

- 7.2 GeV/c HMS & 11.0 GeV/c SHMS allow a lot of kinematic flexibility, with no major upgrades
 - Experiment could be done as soon as beam energy is available!
 - Maximum beam energy and higher Q² reach constrained by sum of HMS+SHMS maximum momenta
 - Q²=8.5 and 11.5 Time FOM similar to PionLT Q²=6.0 and 8.5 points

	10.6 GeV	18.0 GeV	Improvement in $\delta F_{\pi}/F_{\pi}$		
Q ² =8.5	Δε=0.22	Δε=0.40	16.8%→8.0%		
Q ² =10.0	New high quality F_{π} data				
Q ² =11.5	Larger F_{π} extraction uncertainty due to higher $-t_{\min}$				

	p(e,e'π ⁺)n Kinematics					
E _{beam}	θ _{HMS} (e')	P _{HMS} (e')	$ heta_{q(SHMS)} \ (\pi^+)$	P _{SHMS} (π ⁺)	Time FOM	
Q ² =	=8.5 W	/= 3.64	$-t_{min}$ =0.2	24 Δε=0).40	
13.0	34.30	1.88	5.29	10.99	64.7	
18.0	15.05	6.88	8.94	10.99	2.2	
Q ² =	10.0 <i>V</i>	<i>V</i> =3.44	$-t_{min}$ =0.	37 Δε=	0.40	
13.0	37.78	1.83	5.56	10.97	122.7	
18.0	16.39	6.83	9.57	10.97	4.5	
Q^2 =11.5 W=3.24 $-t_{min}$ =0.54 Δε=0.29						
14.0	31.73	2.75	7.06	10.96	82.4	
18.0	17.70	6.75	10.05	10.96	8.8	

■ Since quality L–T separations are impossible at EIC (can't access ε <0.95) this extension of L–T separated data considerably increases F_{π} data set overlap between JLab and EIC

Phase 1 Scenario: K⁺ Form Factor

- 7.2 GeV/c HMS & 11.0 GeV/c SHMS allow a lot of kinematic flexibility
- Maximum beam energy and higher Q² reach constrained by sum of HMS+SHMS maximum momenta
- Success depends on good K^+/π^+ separation in SHMS at high momenta, likely requires a modest aerogel detector upgrade
- Counting rates are roughly 10x lower than pion form factor measurement

	10.6 GeV	16.0 GeV	Improvement in $\delta F_{\kappa}/F_{\kappa}$	
Q ² =5.5	Δε=0.33	Δε=0.40	17.9%→10.7%	
Q ² =7.0	New high quality F_{κ} data			
Q ² =9.0	Larger F_K extraction uncertainty due to higher - t_{min}			

p(e,e'K ⁺)Λ Kinematics					
E _{beam}	θ _{HMS} (e')	P _{HMS} (e')	$ heta_{ ext{q(SHMS)}} \ (\pi^+)$	$P_{SHMS} \ (\pi^{\scriptscriptstyle +})$	Time FOM
Q ² =	=5.5 W	=3.56	$-t_{min}$ =0.	32 Δε=0	0.40
11.0	30.69	1.79	5.50	8.84	746
16.0	12.92	6.79	9.18	8.84	150
Q ² =	=7.0 <i>W</i>	= 3.90	$-t_{min}$ =0.	33 Δε=0	0.29
14.0	25.16	2.64	5.51	10.98	620
18.0	13.91	6.64	7.85	10.98	192
$Q^2=9.0$ W=3.66 $-t_{min}$ =0.54 $\Delta \epsilon$ =0.30					
14.0	29.17	2.54	5.98	10.97	964
18.0	15.90	6.54	8.69	10.97	350

- F_K feasibility studies at EIC are ongoing, but we already know that such measurements there are exceptionally complex.
- JLab measurements likely a complement to those at EicC.

Phase 1: Form Factor Projections

- Y-axis values of projected data are arbitrary
- The errors are projected, based on Δε from beam energies on earlier slides, and T/L ratio calculated with Vrancx Ryckebusch model
- Assumes same statistics as acquired in PionLT experiment
- Inner error bar is projected statistical and systematic error
- Outer error bar also includes a model uncertainty in the form factor extraction, added in quadrature
- F_{π} errors based on Fπ–2 and E12–19–006 experience
- F_K errors more uncertain, as E12–09–011 analysis not yet completed, projected running times extremely long

Phase 2 Scenario: π^+ Form Factor

■ Replace HMS with VHMS for π^+ , use SHMS for e'

- ■Assume θ_{min} =5.5°, θ_{open} =15.0°
- ■VHMS: ΔΩ, ΔP/P similar SHMS
- P_{VHMS}=15.0 GeV/c is sufficient, constrained by max beam energy
- θ_{VHMS} ~5.5° allows improved $\Delta \epsilon$, but does not affect maximum Q² reach
- \bullet θ_{SHMS} <12.0°, P_{SHMS} >9.0 not used
- Dramatic increase in upper Q² 11.5 → 15.0 GeV²
- Error bars for Q²=8.5–11.5 GeV² substantially decrease due to smaller $-t_{min}$ (better $R=\sigma_{T}/\sigma_{L}$) and shorter running times
- Q²=15.0 GeV² point would be very "expensive" in terms of running time, but it would likely have very high scientific priority
- Feasible scenario for Phase 2 Upgrade

p(e,e'π ⁺)n Kinematics						
E _{beam}	θ _{SHMS} (e')	P _{SHMS} (e')	$ heta_{ ext{q(VHMS)}} \ (\pi^+)$	P _{VHMS} (π ⁺)	Time FOM	
Q ²	=8.5 <i>V</i>	V=4.18	- <i>t_{min}</i> =0.1	5 Δε=0	.28	
17.0	21.39	3.63	5.55	13.29	20.5	
22.0	12.15	8.63	7.62	13.29	1.8	
Q ² =	=10.0	<i>W</i> =4.08	$-t_{min}$ =0.2	21 Δε=0	.30	
17.0	24.49	3.27	5.52	13.62	53.3	
22.0	13.46	8.27	7.85	13.62	4.3	
Q ² =	=11.5	<i>W</i> =3.95	$-t_{min}$ =0.2	29 Δε=0	.31	
17.0	27.34	3.03	5.55	13.82	124.8	
22.0	14.66	8.03	8.12	13.82	9.3	
Q ² =	$Q^2=13.0$ W=3.96 $-t_{min}=0.35$ $\Delta \varepsilon=0.25$					
18.0	27.55	3.18	5.54	14.63	209.5	
22.0	16.49	7.18	7.69	14.63	24.4	
$Q^2=15.0$ $W=3.73$ $-t_{min}=0.52$ $\Delta \epsilon=0.26$						
18.0	30.24	3.06	5.73	14.66	560	
22.0	17.88	7.06	8.07	14.66	65.7	

Importance of JLab F_{π} in EIC Era

- Quality L/T-separations impossible at EIC (can't access ε<0.95)
- JLab will remain ONLY source of quality L-T separated data!
- Phase 2: 22 GeV beam with upgraded VHMS
 - ullet Extends region of high quality F_π values to Q²=13 GeV²
 - Somewhat larger errors to Q²=15 GeV²
- \blacksquare Provides MUCH improved overlap of F_π data set between JLab and EIC!

Hard–Soft Factorization in DEMP

- To access physics contained in GPDs, one is limited to the kinematic regime where hard-soft factorization applies
 - No single criterion for the applicability, but tests of necessary conditions can provide evidence that the Q² scaling regime has been reached
- One of the most stringent tests of factorization is the Q² dependence of the π/K electroproduction cross sections
 - σ_L scales to leading order as Q⁻⁶
 - σ_T does not, expectation of Q^{-8}
 - As Q^2 becomes large: $\sigma_L >> \sigma_T$

- Experimental validation of onset of hard scattering regime is essential for reliable interpretation of JLab GPD program results
 - Is onset of scaling different for kaons than pions?
 - K^+ and π^+ together provide quasi model-independent study

DEMP Q⁻ⁿ Hard–Soft Factorization Tests

X	Q ² (GeV ²)	₩(GeV)	−t _{min} (GeV²)
0.31	1.45-3.65	2.02-3.07	0.12
	1.45-6.5	2.02-3.89	
0.39	2.12-6.0	2.05-3.19	0.21
	2.12-8.2	2.05-3.67	
0.55	3.85–8.5	2.02-2.79	0.55
	3.85–11.5	2.02-3.23	

X	Q ² (GeV ²)	W (GeV)	−t _{min} (GeV²)
0.25	1.7–3.5	2.45-3.37	0.20
	1.7–5.5	2.45-4.05	
0.40	3.0-5.5	2.32-3.02	0.50
	3.0-8.7	2.32-3.70	

PHASE 1 SCENARIO

Q⁻ⁿ scaling test range nearly doubles with 18 GeV beam and HMS+SHMS

Hard–Soft Factorization in Backward Exclusive π^0

p(e,e'p)X KaonLT Data Analysis

$$Q^2=3.00~W=2.32~\theta_{pq}=+3.0^{\circ}~-u=0.15~\xi_{\rm u}=0.15$$

- Fortuitous discovery of substantial backward angle meson production during meson form factor experiments
- Can be described by extension of collinear factorization to backward angle (u-channel)
- Backward angle factorization first suggested by Frankfurt, Polykaov, Strikman, Zhalov, Zhalov [arXiv:hep-ph/0211263]

Spokespersons: W.B. Li, G.M. Huber, J. Stevens

Purpose: test applicability of TDA formalism for π^0 production

Staged Upgrade Seems Logical

- Phase 1: Upgrade Beam to 18 GeV, minor upgrades of SHMS, HMS PID, tracking and DAQ
 - Example Measurements:
 - Pion form factor to Q²=10 GeV² with small errors, and to 11.5 with larger uncertainties
 - Kaon form factor requires very long running times, but could allow Q²=7.0 GeV² with small errors, and to 9.0 with larger uncertainties
 - Hard–Soft Q^{-n} factorization tests with $p(e,e'\pi^+)n$ and $p(e,e'K^+)\Lambda$
 - Studies of backward angle Q⁻ⁿ factorization via u-channel p(e,e'p)π⁰ and p(e,e'p)ω
- Phase 2: Upgrade Beam to 22 GeV, upgrade VHMS to 15 GeV/c
 - Would enable a significant increase in Q² reach of quality L—T separations for Deep Exclusive Meson Production
 - e.g. Pion Form factor up to Q²=15 GeV²