DOE contracts: DE-SC0007981 DE-AC05-06OR23177

Phenomenology of helicity TMD: status and challenges

Matteo Cerutti

MAP Collaboration

A. Bacchetta, A. Bongallino, M. Radici, L. Rossi

arXiv: 2409.18078

22 GeV upgrade Open Discussion

$$g_1^q(x) = q^+ - q^-$$

Quark Polarization

		U	L	Т
Pol.	U	$f_1(x)$		
leon	L		$g_1(x)$	
Nuc	Т			$h_1(x)$

2

Helicity TMD distribution

 $g_1^q(x, \mathbf{k}_\perp) = q^+ - q^-$

- How the polarization of the proton reflects on its internal structure in 3 dimensions?
- How the polarization of the quark distorts their transverse momentum?
- Do quarks with spin parallel to the proton's spin have smaller or larger transverse momentum?

Analysis of longitudinally polarized process

SIDIS

 $\mathscr{C}^{\rightleftarrows}(l) + N^{\leftrightarrows}(P) \to \mathscr{C}(l') + h(P_h) + X$

DOUBLE SPIN ASYMMETRY

$$A_1 = \frac{d\sigma^{\rightarrow \leftarrow} - d\sigma^{\rightarrow \rightarrow} + d\sigma^{\leftarrow \rightarrow} - d\sigma^{\leftarrow \leftarrow}}{d\sigma^{\rightarrow \leftarrow} + d\sigma^{\rightarrow \rightarrow} + d\sigma^{\leftarrow \rightarrow} + d\sigma^{\leftarrow \leftarrow}}$$

A. Bacchetta et al., Phys.Rev.D 70 (2004), 117504

M. Diehl and S. Sapeta, Eur. Phys. J. C 41, 515 (2005)

Interpretation in terms of TMDs

TMD factorization

$$A_{1}(x, z, Q, |\mathbf{P}_{hT}|) = \frac{\sum_{a=q,\bar{q}} e_{a}^{2} \int_{0}^{+\infty} d|\mathbf{b}_{T}|^{2} J_{0} \left(\frac{|\mathbf{b}_{T}||\mathbf{P}_{hT}|}{z}\right) \hat{g}_{1}^{a}(x, |\mathbf{b}_{T}|^{2}, Q) \hat{D}_{1}^{a \to h}(z, |\mathbf{b}_{T}|^{2}, Q)}{\sum_{a=q,\bar{q}} e_{a}^{2} \int_{0}^{+\infty} d|\mathbf{b}_{T}|^{2} J_{0} \left(\frac{|\mathbf{b}_{T}||\mathbf{P}_{hT}|}{z}\right) \hat{f}_{1}^{a}(x, |\mathbf{b}_{T}|^{2}, Q) \hat{D}_{1}^{a \to h}(z, |\mathbf{b}_{T}|^{2}, Q)}$$

• Large energy scale $Q^2 \gg M^2$

• Small transverse momentum $q_T^2 \ll Q^2$

⇒ Experimental observables in terms of universal objects

Interpretation in terms of TMDs

TMD factorization

$$A_{1}(x, z, Q, |\mathbf{P}_{hT}|) = \frac{\sum_{a=q,\bar{q}} e_{a}^{2} \int_{0}^{+\infty} d|\mathbf{b}_{T}|^{2} J_{0}\left(\frac{|\mathbf{b}_{T}||\mathbf{P}_{hT}|}{z}\right) \hat{g}_{1}^{a}(x, |\mathbf{b}_{T}|^{2}, Q) \hat{D}_{1}^{a \to h}(z, |\mathbf{b}_{T}|^{2}, Q)}{\sum_{a=q,\bar{q}} e_{a}^{2} \int_{0}^{+\infty} d|\mathbf{b}_{T}|^{2} J_{0}\left(\frac{|\mathbf{b}_{T}||\mathbf{P}_{hT}|}{z}\right) \hat{f}_{1}^{a}(x, |\mathbf{b}_{T}|^{2}, Q) \hat{D}_{1}^{a \to h}(z, |\mathbf{b}_{T}|^{2}, Q)}$$

- Large energy scale $Q^2 \gg M^2$
- Small transverse momentum $q_T^2 \ll Q^2$

⇒ Experimental observables in terms of universal objects

Interpretation in terms of TMDs

TMD factorization

$$A_{1}(x, z, Q, |\mathbf{P}_{hT}|) = \frac{\sum_{a=q,\bar{q}} e_{a}^{2} \int_{0}^{+\infty} d|\mathbf{b}_{T}|^{2} J_{0}\left(\frac{|\mathbf{b}_{T}||\mathbf{P}_{hT}|}{z}\right) \hat{g}_{1}^{a}(x, |\mathbf{b}_{T}|^{2}, Q) \hat{D}_{1}^{a \to h}(z, |\mathbf{b}_{T}|^{2}, Q)}{\sum_{a=q,\bar{q}} e_{a}^{2} \int_{0}^{+\infty} d|\mathbf{b}_{T}|^{2} J_{0}\left(\frac{|\mathbf{b}_{T}||\mathbf{P}_{hT}|}{z}\right) \hat{f}_{1}^{a}(x, |\mathbf{b}_{T}|^{2}, Q) \hat{D}_{1}^{a \to h}(z, |\mathbf{b}_{T}|^{2}, Q)}$$

• Large energy scale $Q^2 \gg M^2$

• Small transverse momentum $q_T^2 \ll Q^2$

 \Rightarrow Experimental observables in terms of universal objects

unpolarized TMDs from MAP22 extraction

MAP Collaboration, Bacchetta et al., JHEP 10 (2022)

Collins, Soper, Sterman, Nucl. Phys. B (1985) Collins, *Foundations of perturbative QCD* (2011)

The evolution of the TMDs follows the CSS approach **consistently**:

 $\hat{f}_{1}(x, |\boldsymbol{b}_{T}|^{2}, Q) = \left[C^{f} \otimes f_{1}\right](x, \boldsymbol{b}_{\star}(|\boldsymbol{b}_{T}|^{2}))f_{NP}(x, |\boldsymbol{b}_{T}|^{2}, Q_{0}) e^{S(\mu_{b_{\star}}^{2}, Q^{2})} e^{g_{K}(\boldsymbol{b}_{T})\ln(Q^{2}/Q_{0}^{2})}$ Analogously for $D_{1}(z, |\boldsymbol{b}_{T}|^{2}, Q)$

 $\hat{g}_1(x, |\boldsymbol{b}_T|^2, Q) = \left[C^g \otimes g_1 \right](x, \boldsymbol{b}_{\star}(|\boldsymbol{b}_T|^2)) g_{NP}(x, |\boldsymbol{b}_T|^2, Q_0) \ e^{S(\mu_{b_{\star}}^2, Q^2)} \ e^{g_K(\boldsymbol{b}_T)\ln(Q^2/Q_0^2)}$

Collins, Soper, Sterman, Nucl. Phys. B (1985) Collins, *Foundations of perturbative QCD* (2011)

The evolution of the TMDs follows the CSS approach **consistently**:

$$\hat{f}_{1}(x, |\boldsymbol{b}_{T}|^{2}, Q) = \left[C^{f} \otimes f_{1}\right](x, b_{\star}(|\boldsymbol{b}_{T}|^{2})) f_{NP}(x, |\boldsymbol{b}_{T}|^{2}, Q_{0}) e^{S(\mu_{b_{\star}}^{2}, Q^{2})} e^{g_{K}(\boldsymbol{b}_{T})\ln(Q^{2}/Q_{0}^{2})}$$
Analogously for $D_{1}(z, |\boldsymbol{b}_{T}|^{2}, Q)$

$$(D_{NP})$$
from MAP22

MAP Collaboration, Bacchetta et al., JHEP 10 (2022)

$$\hat{g}_1(x, |\boldsymbol{b}_T|^2, Q) = \left[C^g \otimes g_1\right](x, b_\star(|\boldsymbol{b}_T|^2)) g_{NP}(x, |\boldsymbol{b}_T|^2, Q_0) \ e^{S(\mu_{b_\star}^2, Q^2)} \ e^{g_K(\boldsymbol{b}_T)\ln(Q^2/Q_0^2)}$$

Collins, Soper, Sterman, Nucl. Phys. B (1985) Collins, *Foundations of perturbative QCD* (2011)

The evolution of the TMDs follows the CSS approach **consistently**:

$$\hat{f}_{1}(x, |\boldsymbol{b}_{T}|^{2}, Q) = \left[C^{f} \otimes f_{1}\right](x, b_{\star}(|\boldsymbol{b}_{T}|^{2})) f_{NP}(x, |\boldsymbol{b}_{T}|^{2}, Q_{0}) e^{S(\mu_{b_{\star}}^{2}, Q^{2})} e^{g_{K}(\boldsymbol{b}_{T})\ln(Q^{2}/Q_{0}^{2})}$$
Analogously for $D_{1}(z, |\boldsymbol{b}_{T}|^{2}, Q)$

$$(D_{NP})$$
from MAP22

MAP Collaboration, Bacchetta et al., JHEP 10 (2022)

 $\hat{g}_1(x, |\boldsymbol{b}_T|^2, Q) = \left[C^g \otimes g_1 \right](x, b_\star(|\boldsymbol{b}_T|^2)) g_{NP}(x, |\boldsymbol{b}_T|^2, Q_0) \ e^{S(\mu_{b_\star}^2, Q^2)} \ e^{g_K(\boldsymbol{b}_T)\ln(Q^2/Q_0^2)}$

$$g_{NP}(x, \mathbf{k}_{\perp}^{2}, Q_{0}) = f_{NP}^{MAP22}(x, \mathbf{k}_{\perp}^{2}, Q_{0}) \frac{e^{-\frac{k_{\perp}^{2}}{\omega_{1}(x)}}}{k_{norm}(x)}$$

Simple Gaussian × MAP22

Positivity constraint

$$g_{NP}(x, \mathbf{k}_{\perp}^{2}, Q_{0}) = f_{NP}^{MAP22}(x, \mathbf{k}_{\perp}^{2}, Q_{0}) \frac{e^{-\frac{k_{\perp}^{2}}{\omega_{1}(x)}}}{k_{norm}(x)}$$

- ► Proportional to f_{NP}^{MAP22}
- ► x-dependent

$$k_{\text{norm}}(x) \rightarrow \int d^2 k_{\perp} g_{NP} = 1$$

 $\omega_1(x) \rightarrow \text{crucial to satisfy } |g_1| \leq f_1$

Positivity constraint

$$g_{NP}(x, \mathbf{k}_{\perp}^{2}, Q_{0}) = f_{NP}^{MAP22}(x, \mathbf{k}_{\perp}^{2}, Q_{0}) \frac{e^{-\frac{k_{\perp}^{2}}{\omega_{1}(x)}}}{k_{norm}(x)}$$

- ► Proportional to f_{NP}^{MAP22}
- ► x-dependent

$$k_{\text{norm}}(x) \rightarrow \int d^2 k_{\perp} g_{NP} = 1$$

 $\omega_1(x) \rightarrow \text{crucial to satisfy } |g_1| \leq f_1$

At $Q_0 = 1$ GeV, the ratio g_1/f_1 reads:

$$\frac{g_1(x, \boldsymbol{k}_{\perp}^2, Q_0)}{f_1(x, \boldsymbol{k}_{\perp}^2, Q_0)} = \frac{g_1(x, Q_0)}{f_1(x, Q_0)} \underbrace{e^{-\frac{k_{\perp}^2}{\omega_1(x)}}}_{k_{norm}(x)} \stackrel{|\boldsymbol{k}_{\perp}| \to 0}{\longrightarrow} \infty$$

Positivity constraint

$$g_{NP}(x, \mathbf{k}_{\perp}^{2}, Q_{0}) = f_{NP}^{MAP22}(x, \mathbf{k}_{\perp}^{2}, Q_{0}) \frac{e^{-\frac{k_{\perp}^{2}}{\omega_{1}(x)}}}{k_{norm}(x)}$$

- Proportional to f_{NP}^{MAP22}
- ► x-dependent

$$k_{\text{norm}}(x) \rightarrow \int d^2 k_{\perp} g_{NP} = 1$$

 $\omega_1(x) \rightarrow \text{crucial to satisfy } |g_1| \leq f_1$

At $Q_0 = 1$ GeV, the ratio g_1/f_1 reads:

$$\frac{g_1(x, \boldsymbol{k}_{\perp}^2, Q_0)}{f_1(x, \boldsymbol{k}_{\perp}^2, Q_0)} = \frac{g_1(x, Q_0)}{f_1(x, Q_0)} \underbrace{e^{-\frac{k_{\perp}^2}{\omega_1(x)}}}_{k_{norm}(x)} \stackrel{|\boldsymbol{k}_{\perp}| \to 0}{\longrightarrow} \infty$$

$$\frac{g_1(x,Q_0)}{f_1(x,Q_0)} \frac{1}{k_{norm}(x)} \le 1 \longrightarrow \qquad \omega_1(x) = f_{pos.}(x) + N_{1g}^2 \frac{(1-x)^{\alpha_{1g}^2} x^{\sigma_{1g}}}{(1-\hat{x})^{\alpha_{1g}^2} \hat{x}^{\sigma_{1g}}}$$

Airapetian et al. (HERMES), Phys. Rev. D (2019)

Experiment	$N_{ m dat}$	$\chi^2_{ m NLL}/N_{ m dat}$	$\chi^2_{ m NNLL}/N_{ m dat}$
HERMES $(d \to \pi^+)$	47	1.34	1.30
HERMES $(d \rightarrow \pi^{-})$	47	1.10	1.08
HERMES $(d \to K^+)$	46	1.26	1.25
HERMES $(d \to K^-)$	45	0.93	0.89
HERMES $(p \to \pi^+)$	53	1.17	1.21
HERMES $(p \rightarrow \pi^{-})$	53	0.86	0.86
Total	291	1.11	1.09

- MAP22 kinematic cuts
- 291 fitted data points
- Perturbative order: NLO

Highest possible

since C^g known up to NLO

Gutiérrez-Reyes et al., Phys. Lett. B (2017)

- Collinear PDFs: NNPDFPol, MMHT, DSS
- Perturbative accuracy: NLL & N2LL
- ✤ 3 fitted parameters
- Error analysis with bootstrap method

Experimental data

8

- + g_1/f_1 TMD ratio for u_v integrated over x , at NNLL
- + Yellow and blue bands correspond to two lattice predictions
- + Milder slope but fair agreement

Phenomenology: CHALLENGES

• Not many constraints on fitted parameters

Parameters	N_{1g}	$lpha_{1g}$	σ_{1g}
NLL	0.70 ± 0.54	27.81 ± 27.70	0.42 ± 0.86
NNLL	0.87 ± 0.72	6.73 ± 6.58	3.04 ± 3.09

Phenomenology: CHALLENGES

• Not many constraints on fitted parameters

Parameters	N_{1g}	$lpha_{1g}$	σ_{1g}
NLL	0.70 ± 0.54	27.81 ± 27.70	0.42 ± 0.86
NNLL	0.87 ± 0.72	6.73 ± 6.58	3.04 ± 3.09

• Experimental asymmetries ≥ 1 in several bins

11

MAP TMD fitting framework

https://github.com/MapCollaboration/NangaParbat

∃ README.md

Nanga Parbat is a fitting framework aimed at the determination of the non-perturbative component of TMD distributions.

Download

You can obtain NangaParbat directly from the github repository:

https://github.com/MapCollaboration/NangaParbat

For the last development branch you can clone the master code:

git clone git@github.com:MapCollaboration/NangaParbat.git

Ø

MAPTMD22 global fit: features

Global analysis of Drell-Yan and SIDIS data sets: 2031 data points

- Perturbative accuracy: N³LL⁻
- Normalization prefactor for SIDIS observables
- Number of fitted parameters: 21

• Agreement with data:
$$\chi^2/N_{data} = 1.06$$

Structure of a TMD

TMD in Fourier space

$$\begin{split} \hat{F}(x, b_T^2; \mu, \zeta) &= \int \frac{d^2 \mathbf{k}_{\perp}}{(2\pi)^2} e^{i \mathbf{b}_T \cdot \mathbf{k}_{\perp}} F(x, k_{\perp}^2; \mu, \zeta) & \text{Collinear extractions} \\ \hat{f}_1^q(x, b_T^2; \mu, \zeta) &= \sum_j \underbrace{C_{q/j}(x, b_*; \mu_{b_*}, \mu_{b_*}^2)}_{j} \otimes \underbrace{f_1^j(x, \mu_{b_*})}_{j} \otimes \underbrace{f_1^j(x, \mu_{b_*})}_{j} &: \mathbf{A} \\ & \text{Perturbative TMD at the initial scale} \\ \text{Perturbative} & \times \exp\left\{ \underbrace{K(b_*; \mu_{b_*})}_{\mu_{b_*}} \ln \frac{\sqrt{\zeta}}{\mu_{b_*}} + \int_{\mu_{b_*}}^{\mu} \frac{d\mu'}{\mu'} \left[\gamma_F - \gamma_K \ln \frac{\sqrt{\zeta}}{\mu'} \right] \right\} &: \mathbf{B} \\ & \text{Evolution to final scale (of the process)} \\ & \times \underbrace{f_{NP}(x, b_T^2)}_{Non-perturbative part of the TMD} & \underbrace{Parameterization}_{Parameterization} \\ & \text{Collinear extractions} \\ & \text{Collinear extra$$

14

MAP22: Perturbative accuracy

Resummation of large logs

$$S_{\text{pert}}(\mu_b, \mu) = 1 + \sum_{k=0}^{\infty} R_{\text{N}^k \text{LL}}$$

$$S_{\text{pert}}(\mu_b, \mu) = 1 + \sum_{k=0}^{\infty} \sum_{n=1+[k/2]}^{\infty} \left(\frac{\alpha_S(\mu)}{4\pi}\right)^n \sum_{k=1}^{2n} L^{2n-k} R^{(n,2n-k)} \qquad L = \ln\left(\frac{\mu^2}{\mu_b^2}\right)$$

Accuracy	H and C	K and γ_F	γκ	PDF/FF and a_s evol.
LL	0	-	1	-
NLL	0	1	2	LO
NLL'	1	1	2	NLO
NNLL	1	2	3	NLO
NNLL'	2	2	3	NNLO
N ³ LL ⁻	2	3	4	NNLO/NLO
N ³ LL	2	3	4	NNLO
N ³ LL'	3	3	4	N ³ LO

Bacchetta, Bertone, Bissolotti, et al., JHEP 07 (2020) *TMD handbook*, Boussarie, et al., 2023

MAP22: NP parametrization

$$f_{NP}(x, b_T^2) \exp\left\{g_K(b_T^2) \ln \frac{\sqrt{\zeta}}{\sqrt{\zeta_0}}\right\}$$

Bacchetta, Gamberg, Goldstein, et al., PLB 659 (2008) Bacchetta, Conti, Radici, PRD 78 (2008) Pasquini, Cazzaniga, Boffi, PRD 78 (2008) Matevosyan, Bentz, Cloet, Thomas, PRD 85 (2012) Burkardt, Pasquini, EPJA (2016) Grewal, Kang, Qiu, Signori, PRD 101 (2020)

$$\begin{split} f_{1NP}(x, b_T^2) &\propto \text{F.T. of } \left(e^{-\frac{k_\perp^2}{g_{1A}}} + \lambda_B k_\perp^2 e^{-\frac{k_\perp^2}{g_{1B}}} + \lambda_C e^{-\frac{k_\perp^2}{g_{1C}}} \right) \\ g_1(x) &= N_1 \frac{(1-x)^{\alpha} x^{\sigma}}{(1-\hat{x})^{\alpha} \hat{x}^{\sigma}} \\ D_{1NP}(x, b_T^2) &\propto \text{F.T. of } \left(e^{-\frac{P_\perp^2}{g_{3A}}} + \lambda_{FB} k_\perp^2 e^{-\frac{P_\perp^2}{g_{3B}}} \right) \\ g_3(z) &= N_3 \frac{(z^{\beta} + \delta)(1-z)^{\gamma}}{(\hat{z}^{\beta} + \delta)(1-\hat{z})^{\gamma}} \\ g_K(b_T^2) &= -g_2^2 \frac{b_T^2}{4} \end{split}$$

11 parameters for TMD PDF + 1 for NP evolution + 9 for TMD FF = **21 free parameters**

Drell-Yan	SIDIS		
Fixed-target low-energy DY			
	HERMES data		
RHIC data	COMPASS data		
LHC and Tevatron data			
	$Q > 1.3 { m ~GeV}$		
$9 \lesssim Q \lesssim 11 \text{ GeV}$ excluded (Υ resonance)	0.2 < z < 0.7		
$q_T _{\rm max} = 0.2Q$	$P_{hT} _{\text{max}} = \min[\min[0.2Q, 0.5zQ] + 0.3 \text{ GeV}, zQ]$		

484 experimental points

1547 experimental points

Role of Gaussian

$$g_{NP}(x, \mathbf{k}_{\perp}^{2}, Q_{0}) = f_{NP}^{MAP22}(x, \mathbf{k}_{\perp}^{2}, Q_{0}) \frac{e^{-\frac{k_{\perp}^{2}}{\omega_{1}(x)}}}{k_{norm}(x)}$$

Role of Gaussian

$$g_{NP}(x, \mathbf{k}_{\perp}^{2}, Q_{0}) = f_{NP}^{MAP22}(x, \mathbf{k}_{\perp}^{2}, Q_{0}) \frac{e^{-\frac{k_{\perp}^{2}}{\omega_{1}(x)}}}{k_{norm}(x)}$$

+ $f_{pos.}(x)$ guarantees the positivity bound at TMD level $f_{pos.}(x) \approx c + h^2 e^{-\frac{(x-\mu)^2}{\sigma^2}}$ $10^{-4} \le x \le 0.7$ (interpolation function)

+ N_{1g} , α_{1g} , σ_{1g} are the **free parameters** of the fit, $\hat{x} = 0.1$

$$\omega_1(x) = f_{pos.}(x) + N_{1g} \frac{(1-x)^{\alpha_{1g}^2} x^{\sigma_{1g}}}{(1-\hat{x})^{\alpha_{1g}^2} \hat{x}^{\sigma_{1g}}}$$

 $f_1(x) \rightarrow MMHT2014 \text{ set}, D_1(z) \rightarrow DSS14, DSS17 \text{ sets}$ $g_1(x) \rightarrow NNPDFpol1.1: 100 \text{ MC members}$

100 replicas of A_1 data points to be fitted

i-th replica of $g_1(x)$ and the extracted g_1 TMD associated with the **same replica** of unpolarized TMDs

Uncertainty of extracted **collinear** PDF propagated onto **TMD**'s uncertainty