Project: PS-TGT-14-001 Hall A Tritium Target
Tittle: Multiple scattering of the electron beam in the Be isolation window
Document Number: TGT-CALC-103-006
Revision: Rev 1
Author: Dave Meekins Date: 8/13/2015

Code(s) of Record:

Reference:
Leo: Techniques for Nuclear and Particle Physics
Description:
General calculations for beam multiple scattering in Be isolation window. Given the distance of 15 cm from isolation window to target window, the effects of multiple scattering are considered on the target. Lowest expected beam energy is chosen for this calc.

Reference Drawing(s):
TGT-103-1002-0001 Be window assy

Units and constants:

$$
\begin{aligned}
& \mathrm{eV}:=1.602 \cdot 10^{-19} \cdot \mathrm{~J} \\
& \mathrm{MeV}:=10^{6} \cdot \mathrm{eV} \\
& r_{e}:=2.817 \cdot 10^{-13} \cdot \mathrm{~cm}
\end{aligned}
$$

Beam properties:

$$
\begin{aligned}
& I_{\text {beam }}:=20 \cdot \mu A \\
& m_{e}:=0.511 \cdot \frac{M e V}{c^{2}} \\
& E_{e}:=1000 \cdot \mathrm{MeV} \\
& \tau:=\frac{E_{e}-m_{e} \cdot c^{2}}{m_{e} \cdot c^{2}}=1.956 \cdot 10^{3} \\
& P_{e}:=\frac{1}{c} \cdot \sqrt{E_{e}{ }^{2}-\left(m_{e} \cdot c^{2}\right)^{2}} \\
& v_{e}:=\frac{P_{e}{ }^{2}}{\sqrt{m_{e}{ }^{2}+\frac{P_{e}{ }^{2}}{c^{2}}}} \\
& \beta:=\frac{v_{e}}{c} \\
& \gamma:=\frac{1}{\sqrt{1-\beta^{2}}} \\
& X:=\log (\beta \cdot \gamma)=3.292 \\
& \eta:=\beta \cdot \gamma=1.957 \cdot 10^{3}
\end{aligned}
$$

Be isolation window properties

$$
\begin{array}{l|l|l|l|l|l|}
\hline L_{x}:=0.008 \cdot \text { in } & & \text { thick of window material } \\
\hline Z:=4 & & & \text { Atomic number } \\
\hline A:=9.012 & & & & & \\
\hline \rho & & & \text { Atomic weight in } \mathrm{gm} / \mathrm{mol} \\
\hline & \\
\hline & \\
\hline
\end{array}
$$

Multiple scattering angle

$$
\begin{aligned}
& x:=\rho \cdot L_{x} \cdot \frac{c m^{2}}{g m} \\
& p_{e}:=P_{e} \cdot \frac{c}{M e V} \\
& F:=0.9 \\
& \chi_{c}:=\sqrt{0.157 \cdot\left(\frac{Z \cdot(Z+1)}{A}\right) \cdot \frac{x}{p_{e}{ }^{2} \cdot \beta^{2}}} \\
& \chi_{a}:=\frac{0.0045}{p_{e}} \cdot Z^{\frac{1}{3}} \cdot \sqrt{1+3.34 \cdot\left(Z \cdot \frac{\alpha}{\beta}\right)^{2}}=7.153 \cdot 10^{-6} \\
& \Omega:=\frac{\chi_{c}{ }^{2}}{\chi_{a}{ }^{2}}
\end{aligned}
$$

$$
\nu:=0.5 \cdot \frac{\Omega}{(1-F)}
$$

$$
\theta:=\left(2 \cdot \frac{\chi_{c}{ }^{2}}{1+F^{2}} \cdot\left(\frac{1+\nu}{\nu} \cdot \ln (1+\nu)-1\right)\right)^{\overline{2}} \cdot \operatorname{rad}=2.986 \cdot 10^{-4}
$$

Assuming the distance from the cell entrance to the Be window is 6 inch the beam spread is at 3σ given below

$$
\begin{aligned}
& \Delta z_{\text {ent }}:=15 \cdot \mathrm{~cm} \\
& \Delta x:=\Delta z_{\text {ent }} \cdot \tan (6 \cdot \theta)=0.027 \mathrm{~cm}
\end{aligned}
$$

At the exit of the cell we have

$$
\begin{aligned}
& \Delta z_{\text {exit }}:=40 \cdot \mathrm{~cm} \\
& \Delta x:=\Delta z_{\text {exit }} \cdot \tan (6 \cdot \theta)=0.072 \mathrm{~cm}
\end{aligned}
$$

Note that the expected raster size is $2 \times 2 \mathrm{~mm}$ square. Thus, the multiple scattering is not expected to be an issue.

