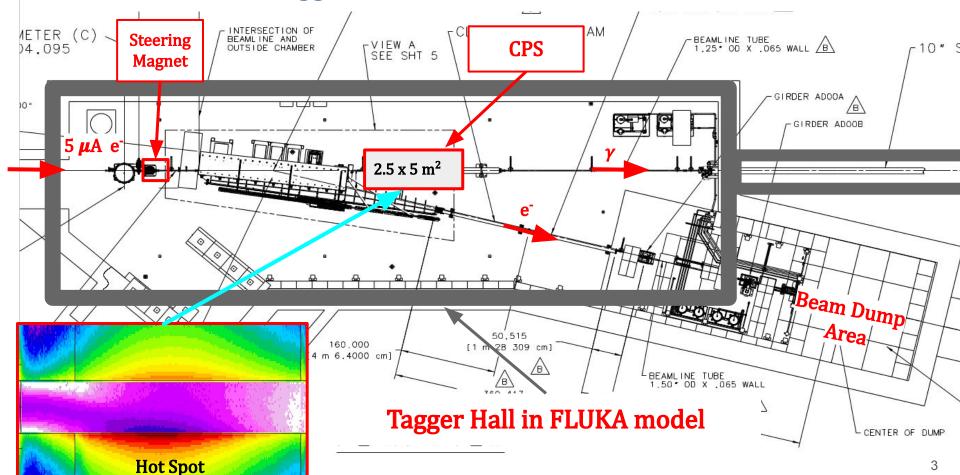
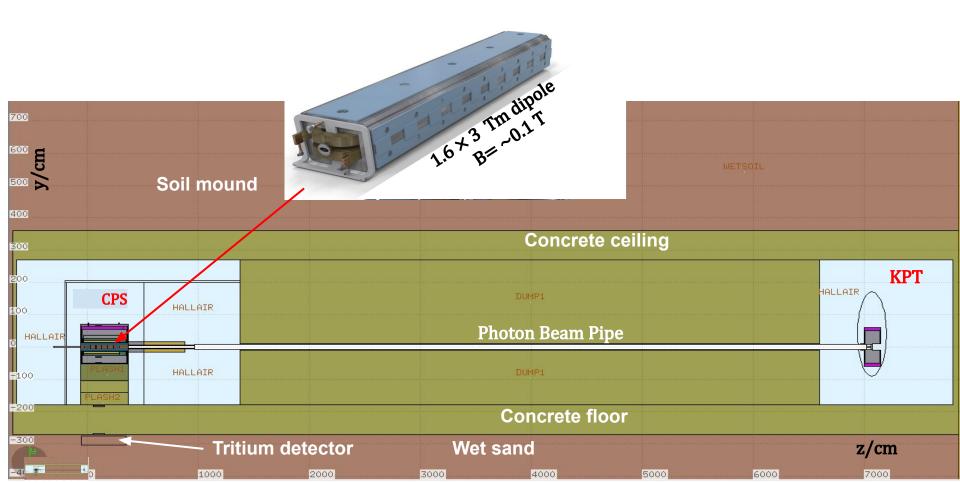
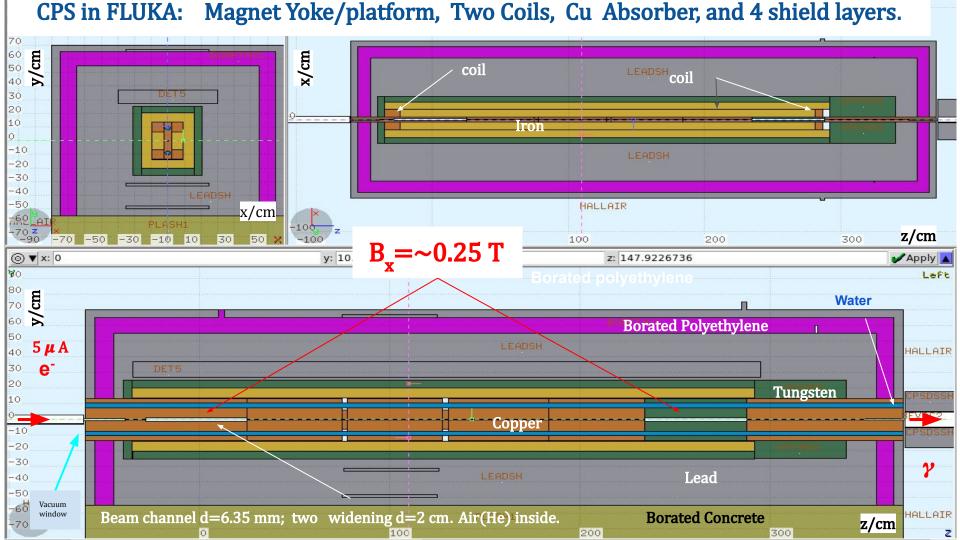


Compact Photon Source for Hall D.

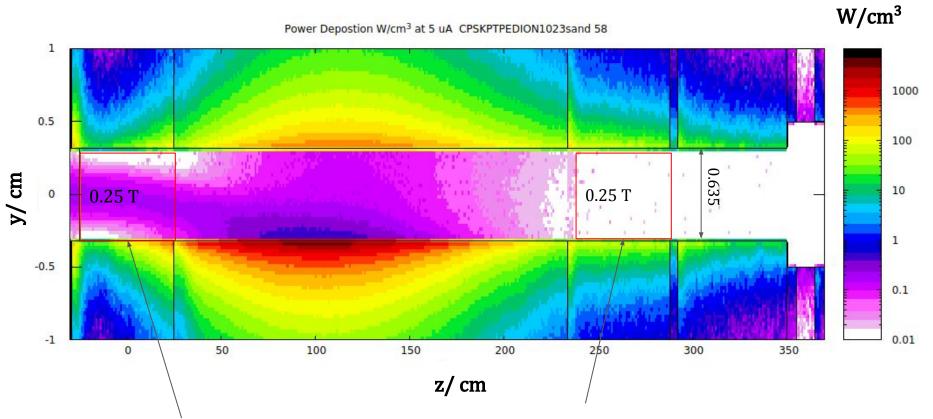

Design and simulation using FLUKA at $5 \mu A$ e-beam, FWHM=2.5 mm.

For KLF Collaboration
V. Baturin , Old Dominion University, Norfolk,VA
Last edit 01/18/2023.

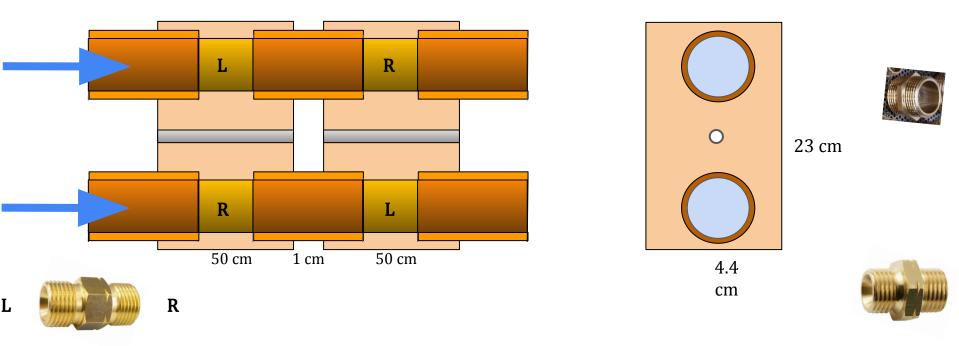

OUTLINE


- 1. CPS in FLUKA. Location, Design, Alignment.
- 2. Energy Deposition and Absorber Temperature.
- 3. Photon Beam Quality.
- 4. Radiation in Magnet and Insulation Lifetime.
- 5. Prompt Dose and Activation around CPS.
- 6. Tritium Contamination in Soil and Cooling Waters.
- 7. Lifetime of various materials.
- 8. Weight/Cost. 2023 Charge.
- 9. Conclusion and Outlook.

CPS location in Tagger Hall. Beam $5 \mu A$, Gaussian, FWHM=2.5 mm.

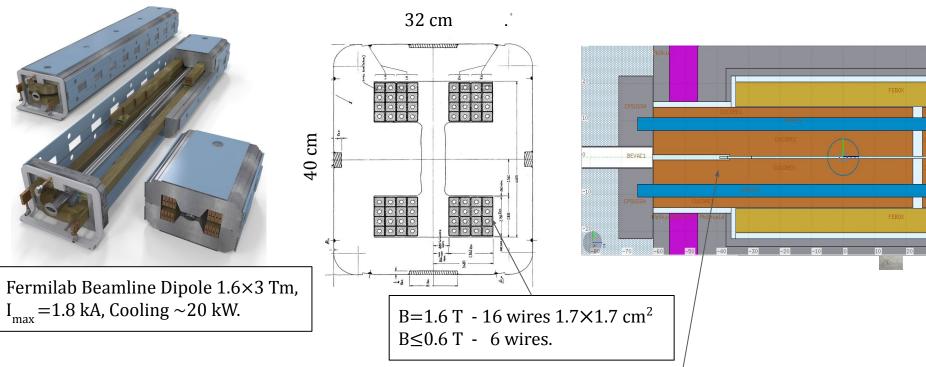


CPS, Tagger Hall, KPT and Magnet prototype in FLUKA model.


Source of radiation. Hot spot in the absorber. Power deposition

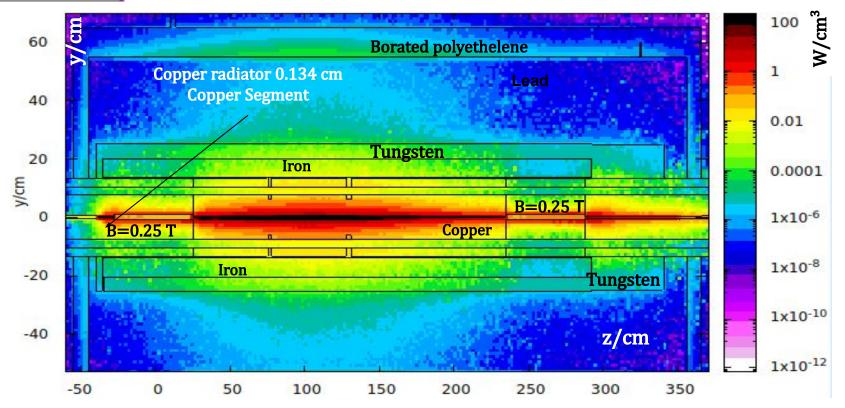
Upstream magnet forms the Hot Spot; Downstream - cleans the photon beam.

CPS Absorber and Alignment.


Segmented Copper Absorber - possible solution.

- Segments $\sim 4.4 \times 20 \times 50$ cm³, **round** beam **hole:** => (1) no problem of thermal contact between 2 parts and (2) may be vacuumized.
- Segments are connected by fittings with **left/right-**hand threads; may be brazed.
- Provides direct **copper-water contact** inside segments: => no interface; better cooling.

Magnet as precise platform for Absorber

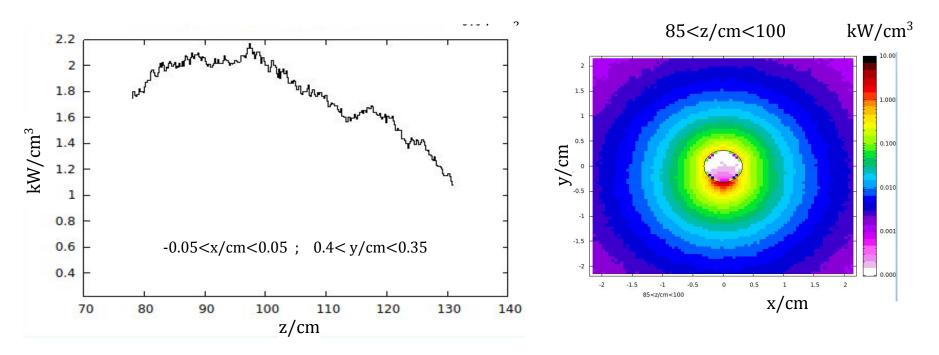

- 1. **Iron shield** and **precision platform** for Absorber. Specified flatness within 500 μ m
- 2. **Housing for all parts** with narrow beam channels, **including protruded segments.**
- 3. **Precision Assembling at a bench** and **in-hall Alignment with 5 DOF** only.

Energy deposition and

Temperature of CPS components.

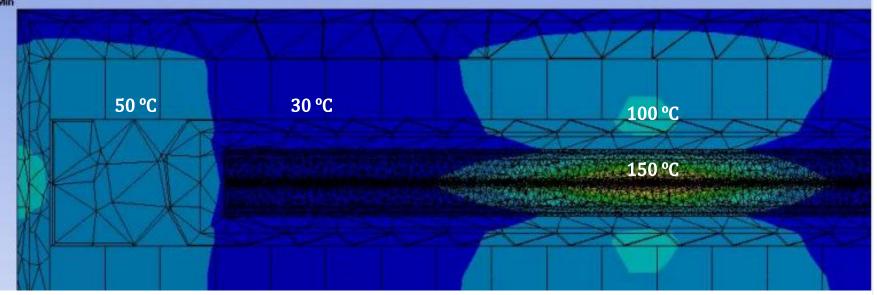
Power Deposition in in -0.5 < x/cm < 0.5. Current model. Course map.

- Protruding **copper segment** around Radiator to mitigate lead overheating.
 - To-calculations in progress. Channel widening in coil area to reduce dose rates.


[baturin@hallal1 PEDFASTGUN4]\$ ls -lt *.inp | grep or -rw-r--r-- 1 baturin clas 49936 Feb 9 11:07 CPSKPTLEAD1712narrGUNvacTRP_org.inp

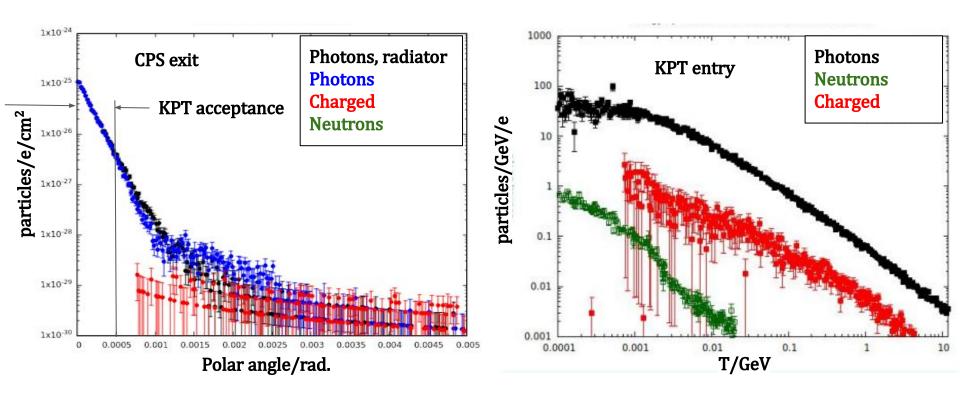
Power breakdown between CPS components.

CPS part	GeV/e	$kW/5 \mu A$
DS Shield (W)	0.063	0.316
US Shield (W)	0.033	0.163
Side Shield (W)	0.013	0.064
Top Water Pipe	0.001	0.005
Bottom Pipe	0.001	0.006
Magnet Pole Right	0.322	1.610
Magnet Pole Left	0.321	1.619
Coils	0.058	0.289
Magnet Yoke	0.101	0.504
Lead Shield	0.006	0.032
Polyethylene (B)	0.002	0.011
Lead Skin	0.001	0.004
Converter (Cu)	0.002	0.010
Total	0.923	4.620

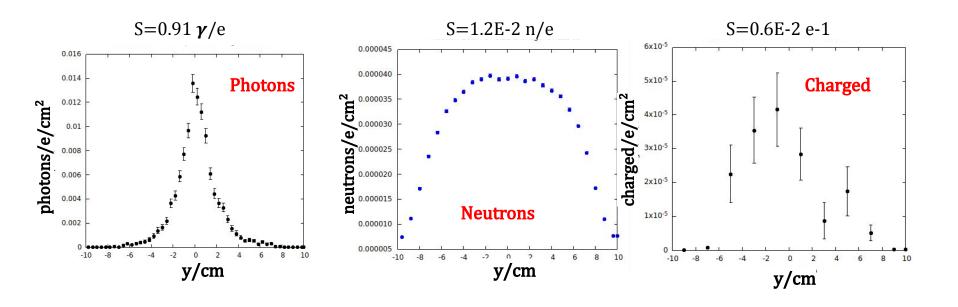

Segment	${ m GeV/e}$	$kW/5 \mu A$
$1~\mathrm{W/Cu}$	0.230	1.151
2	2.013	10.077
3	4.743	23.744
4	2.034	10.183
5	0.385	1.929
$6~\mathrm{W/Cu}$	0.164	0.822
Radiator	0.002	0.010
Total	9.571	47.916

Power Deposition in skinny layer of Hot Segment. Fine map.

- Maximum $dP/dV = 2 kW/cm^3$
- **ANSYS calculations** to be done by Tim Whitlatch using this Map.
- Copper does not melt; expected channel surface temperature $T_{max} = \sim 230 \, C^{\circ}$.

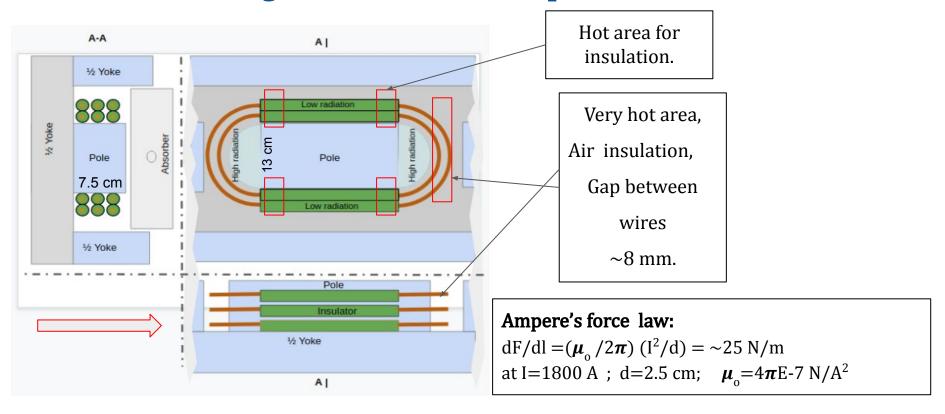

Temperature field in the entire CPS at perfect thermal contact.

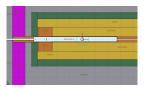
- Copper $(T_m=1085^{\circ} C)$ in Absorber Channel does not melt: $T < 200^{\circ} C$.
- Lead $(T_m=327^{\circ}\text{C})$ and Iron $(T_m=1538^{\circ}\text{C})$ temperatures below melting points: $T<100^{\circ}\text{C}$? and 150° C.


Photon Beam Quality

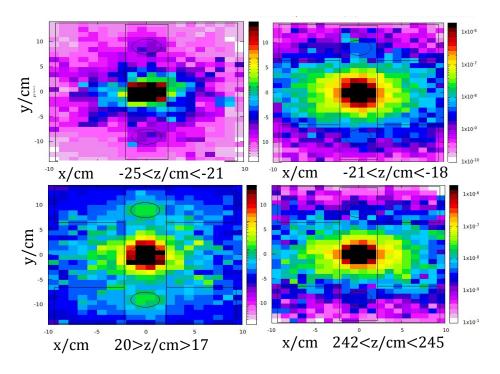
Particles exiting from the CPS. Angular profile.

- Photon beam at the CPS exit looks very clean (< 1.E-3). Left plot.
- What happens to the beam after 67 m of beam line? Right plot.

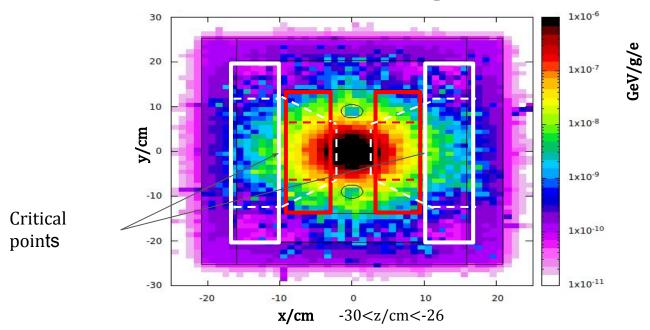

Beam quality at KPT.


- After 67 m of beam line the total **background** of charged particles and neutrons is **<2.%**.
- Be target acceptance r=2.5 cm; **80%** of photon beam hits the Be target of KPT.
- Photon beam intensity at KPT entry \sim 2.8 E+13 photons/s.

Magnet performance. Coil insulation lifetime.

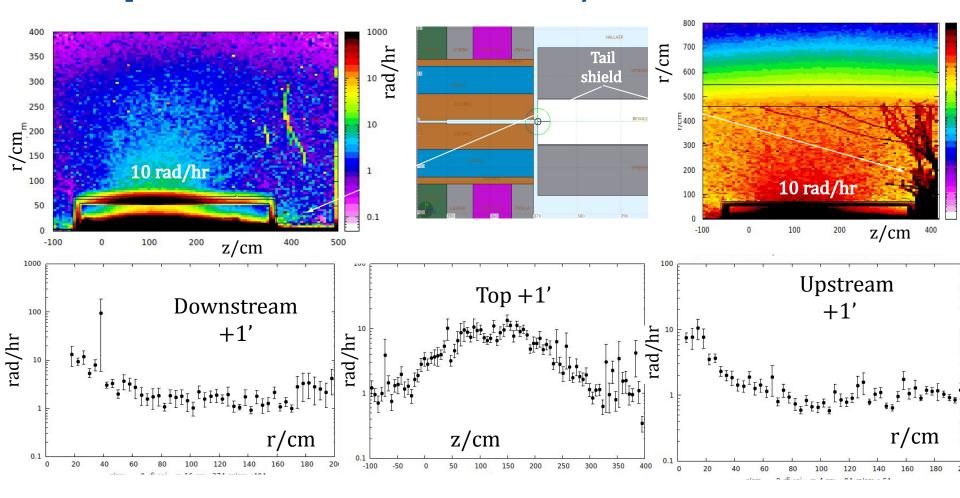

Coil Design and Insulation Exposure to Radiation.

- Attractive force of bent parts $F = 25 \text{ N/m}^* 0.3 \text{ m} = 7.5 \text{ N}.$
- Copper 1.7 cm -wires (tubes) will not touch.

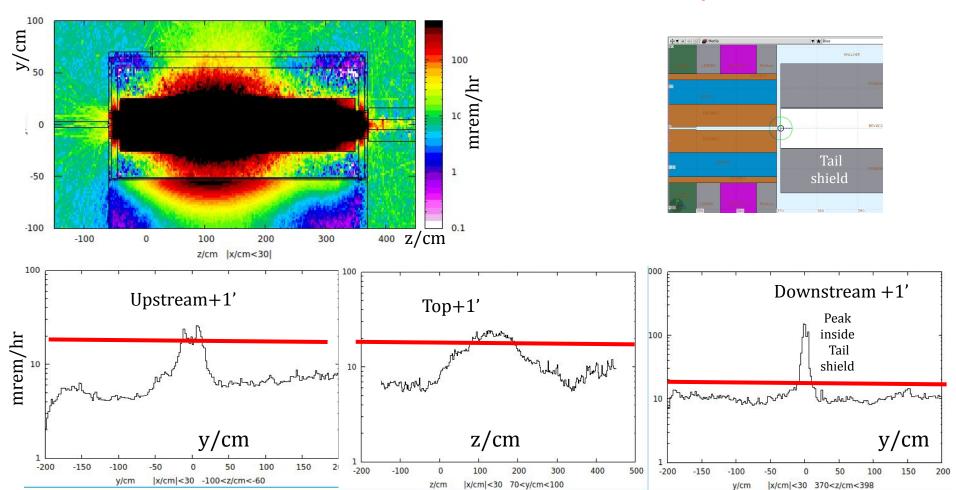


Prompt Dose in Coils and Insulation Lifetime (straight part).

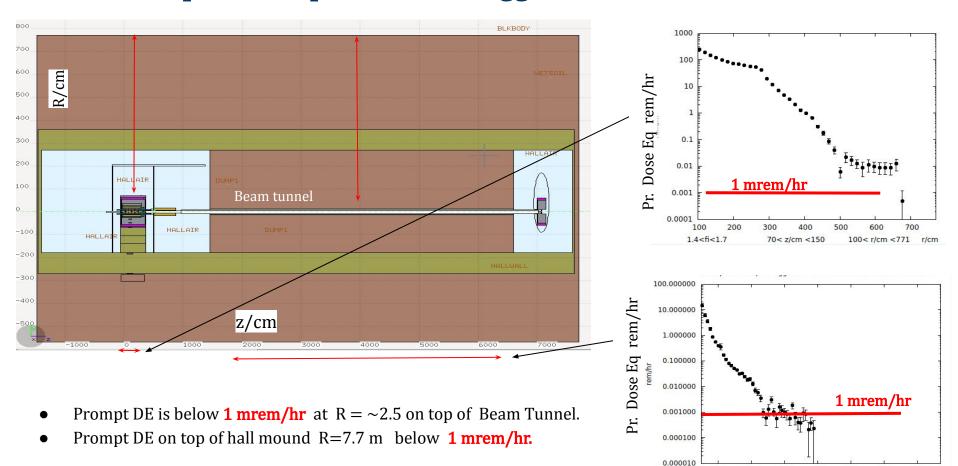
- Reference Dose **2.E-8 GeV/g/e** $\times 1.6E-10$ J/Gev=3.2E-18 Jg⁻¹e⁻¹ =3.2E-15 Gy/e;
- Translates to 3.2E-15 [Gy/e] \times 3.E+13 [e/s] \cong **0.1 [Gy/s]**.
- Fiberglass cloth withstands **50 MGy** => **Lifetime** =5.E+8 s = 15 years.
- Bent part dose rate is ~ 10 times higher.


Benefit of wider magnet (+14 cm).

- Dose rate in critical points **0.1 Gy/s** (**2.E-8 GeV/g/e**)
- For 14 cm wider Magnet Insulation Lifetime in Coil return area is of **15 years.**


Prompt Dose and Activation around CPS

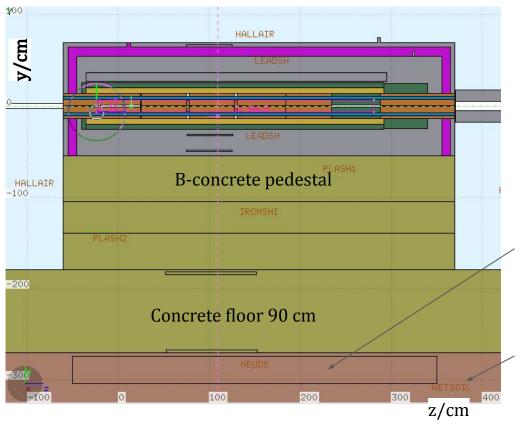
Prompt Dose Rate around CPS < 10 rad/hr. Effect of Tail shield.



Activation After 1000+1 hr < 20 mrem/hr.

Prompt Dose Equivalent in Tagger hall and Beam Channel.

1550 < z/cm < 6500

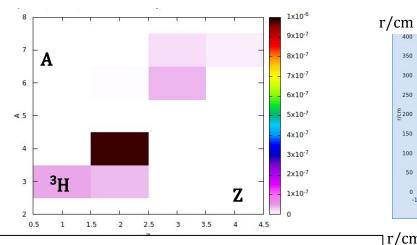

1.4<fi<1.7

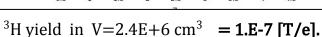
50 < r/cm < 771 r/cm

Tritium activity in Soil Cooling Water

and

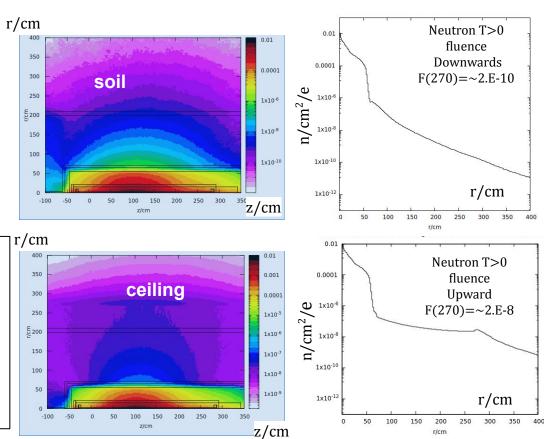
Tritium detector in FLUKA model

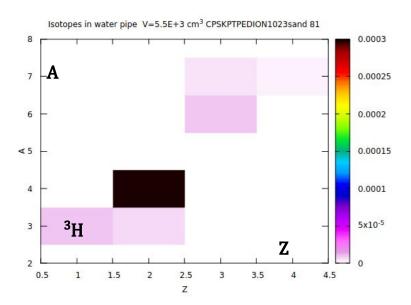



Tritium detector $V=2*0.3*4 \text{ m}^3=$ 2.4 m³

Soil.
Wet sand with 20% of water

Neutron fluence and Tritium in ground waters ($V=2.4 \text{ m}^3$).




³H yield per year **N=**1.E-7 [T/e] 3.E+13 [e/s] 3.14E+7[s] = **1.E+14.**

Activity of soil volume after one year:=

- dN/dt=1.E+14 / (12*3.14E+7 s) = 2.6E+4 BqOr ~200 Bq/L in water (~20% by volume in soil).
 - Tritium activity in ground water is 3% of VA drink water limit 7000 Bq/L.

Tritium in water of cooling pipes.

We read the yield of ³H in the cooling water: **1.E-5** [**T/e**]

Number of T nuclei produced in one year: =

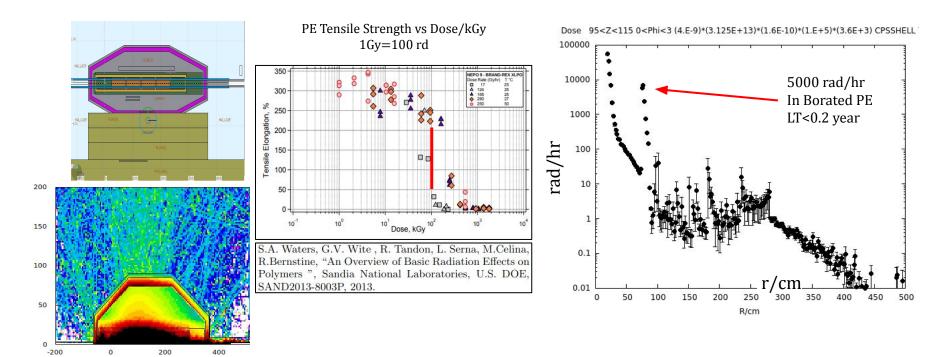
$$N_{T}=1.E-5$$
 [T/e] 3.E+13 [e/s] 3.14E+7[s] =1.E+16 [T]

Actility:

$$-dN_{T}/dt=1.E+16/(12*3.14E+7 s) = 2.6 E+7 Bq$$

This amount of Tritium may be accumulated by tritium absorbers.

Lifetime of various materials from


FLUKA simulations.

Material lifetime from FLUKA simulations

CPS Material	"Lethal" Dose	Max. Dose rate	Life time	Life time	Comment
	(unit)	(unit) (unit)		(year)	
SuperNG [16]	$4 \times 10^7 \text{ (rad)}$	10 (rad/h)	$4 \times 10^{6} \; (h)$	≥ 400	Connectors
EVA [12]	$2 \times 10^7 \text{ (rad)}$	10 (rad/h)	$2 \times 10^6 \text{ (h)}$	≥ 200	Cable insulation
Low Den. Polyeth. [12]	$1 \times 10^7 \text{ (rad)}$	10 (rad/h)	$1 \times 10^6 \text{ (h)}$	≥ 100	Cable insulation
Low Den. Polyeth. [12]	$1 \times 10^7 \text{ (rad)}$	$5 \times 10^3 \text{ (rad/h)}$	$2 \times 10^{3} \text{ (h)}$	≥ 0.2	Shield
Alumina ceramics [14]	$10^{21} (n/cm^2)$	$5 \times 10^9 (\text{n/cm}^2/\text{s})$	$2 \times 10^{11} \text{ (s)}$	$\geq 6,000$	Coil ins.
Alum./Silica glass [13]	$10^7 (Gy)$	0.1 (Gy/s)	$1 \times 10^{8} \text{ (s)}$	≥ 3	Opt. Prop. study
Silica ceramics [14]	$> 0.3 \times 10^{21} \; (\text{n/cm}^2)$	$5 \times 10^9 \; (\text{n/cm}^2/\text{s})$	$6 \times 10^{10} \text{ (s)}$	> 2,000	3 m Coil insul.
Silica ceramics [12]	$> 10^8 \; (Gy)$	$0.1 \; (\mathrm{Gy/s})$	$10^9 (s)$	> 30	Coil insul.
Kapton [7]	$10^7 \; (Gy)$	$0.1 \; (\mathrm{Gy/s})$	$10^{8} (s)$	≥ 3	Coil insulation
Fiber Glass Cloth [7]	$5 \times 10^7 \text{ (Gy)}$	$0.1 \; (\mathrm{Gy/s})$	$5 \times 10^8 \text{ (s)}$	≥ 15	Coil insulation
Epoxy [12]	$6 \times 10^7 \text{ (Gy)}$	$0.1 \; (Gy/s)$	$6 \times 10^8 \text{ (s)}$	≥ 20	Coil insul.

Blowing He through CPS may prevent oxidation and improve lifetime of some materials.

Prompt dose and Polyethylene lifetime.

- BPE elastic properties degrade significantly after 1.E+7 rad / 5000 rad/hr = \sim 0.2 year.
- Borated polyethylene can **not** be used as **construction material**.
- Possible solution:- BPE granules in metal tanks or containers.

CPS Weight and Cost

CPS Component	Material	Density	Cost	Weight	Total Cost
		(g/cm^3)	(\$/kg)	(MetricT)	(\$)
Absorb. In/Out	W	16.3	80.00	0.2	15,500
Lead skin	Pb	11.4	5.8	15.1	87,500
Plastic shield	Borated PE	1.2	20.5	0.5	10,100
Lead shield	Pb	11.4	5.8	36.5	211,400
Left shield	W	16.3	80.0	1.4	108,000
Top shield	W	16.3	80.0	0.8	67,000
Right shield	W	16.3	80.0	1.4	108,000
Bottom shield	W	16.3	80.0	0.8	67,000
Magnet	Fe	7.9	50.0	2.0	101,800
Absorber	Cu	9.0	122.6	0.2	27,400
Upstream shield	W/Cu	15.2	140.0	0.2	21,600
Downstream shield	W/Cu	15.2	140.0	1.2	171,400
CPS				60.9	894,100
Total tungsten				5.8	543,200

- Cost without magnet \$793,000.
- Cost of Tungsten \$543,000.

Hall D K-Long Facility E12-19-001. Experiment Readiness Review Phase I. Jefferson Lab, 2023 Charge.

• Is there any R&D needed to be done prior to start the construction of the KLong Facility? **No** $5\mu\text{A electron beam on the CPS} \qquad \text{FWHM}=2.5 \text{ mm}, 3.1E+13 \text{ e/s}, \text{ steering magnet}.$

• What is the status of the Compact Photon Source (CPS)? Specifically the :

1. Conceptual design: Presented.

2. Evaluation of the **produced radiation**: < 1 mrem/hr on top of Tagger Hall and Tunnel Mounds.

3. **Approximations** in the MC simulations and Code used: Simplified Tagger & KPT Halls. FLUKA2021.2.9.

4. Energy deposition, Absorber and Lead temperature: 2 kW/cm³, Cu Absorber < 200°C, Pb shield < 100°C.

5. Prompt **dose** and **activation** around the CPS (Tagger Hall): Dose < **10** rad/hr, <**20** mrem/hr. Maps available.

6. **Magnet** and **insulation lifetime**: $0.25 \times 0.5 \text{ Tm}$, $I \le 1.8 \text{ kA}$, 4-6 turns, wire $2 \times 2 \text{ cm}^2$, T < 150 °C, LT = 15 years.

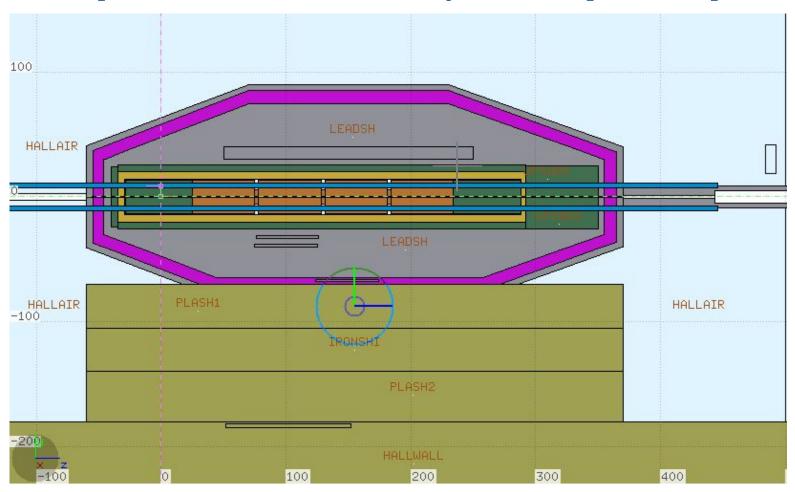
7. **Cooling system** and **ground water contaminations**: Tritium Activity **2.6*10⁷ Bq** and **200 Bq/L** after 1 year.

• What will the photon **beam quality** be: **1%** of neutrons and \pm part . FWHM=4 cm, **3E+13** s⁻¹

• What are the **cost and schedule estimates** for the construction of the CPS: **800 k\$** (no magnet).

• Will **civil constructions** be needed to contain the radiation in the Tagger Hall: **No**

• What is **Decommissioning Plan** for CPS and Activated Components: mounted on a platform, **move aside**.


Conclusion

In our concept the **CPS** is an **Adjustable Unit** housing the entire Beam Channel. It is surrounded with several layers of shielding materials. CPS provides a 99% clear beam of 3.E+13 photons/s on KPT.

This concept allows **to avoid risks** and provide:

- 1. **No Overheating** of Copper Absorber $(T_{max} = 200^{\circ} \text{ C})$.
- 2. **No Short Circuit** in Magnet Coil for up to **15 years** with fiberglass based insulation.
- 3. **No Prompt Radiation** a > 10 rad/hr around CPS and > 0.1 mrem/hr on top of Tagger Hall.
- 4. **No Activation** > **20 mrem/hr around** CPS after 1000+1 hrs of continuous operation .
- 5. **No Tritium Activity** > **200 Bq/L** in ground and cooling waters. (\sim 3% of VA limit).

Optimized CPS with external layers of "elliptical" shape.

The End