

Simulation and Reconstruction of $K_L^+p \rightarrow K_s^+p$ and $K_L^+p \rightarrow K^++n$ using GlueX tracker and KLF software.

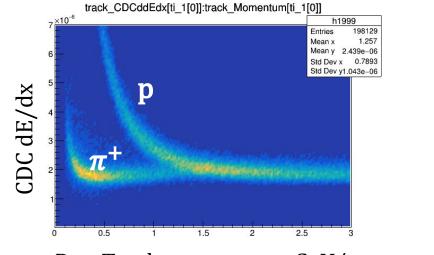
Vitaly Baturin, ODU, 08/29/2024

Outlook

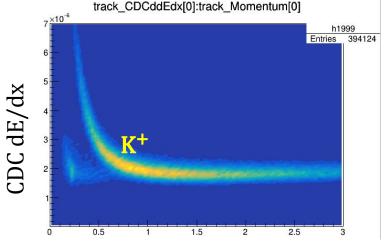
- 1. Simulated Detector performance: examples dE/dx vs momentum etc.
- 2. Reconstruction of $K_L^+ p$ and $K^+ + n$ final states $K_L^+ p \rightarrow K_s^- + p$ at **low /high** beam momenta $K_L^+ p \rightarrow K^+ + n$ at **low/high** beam momenta
- 3. Background from other halls.
- 4. Conclusion


```
Identification of final particles. K_L^+p \rightarrow K_s^+p and K_L^+p \rightarrow K^++n
```

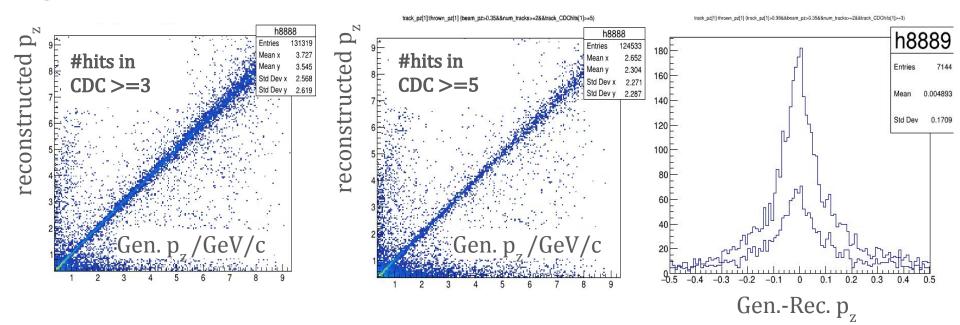
Hadronic decays, lifetimes, and detector dimensions.


K_s→ $\pi^+\pi^-$ 69.2% c τ = 2.9 cm => decays mostly inside LH2 target and close to it. → $\pi^0\pi^0$ 30.7%

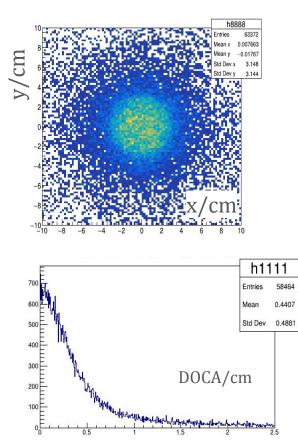
K⁺→ $\pi^{+}\pi^{+}\pi^{-}$ 5.6 % c τ =371.2 cm =>K⁺ almost "stable" within the LH2 Target and CDC. → $\pi^{+}\pi^{0}$ 20.7 %

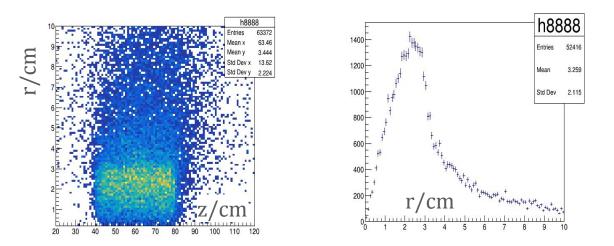

- $K_s + p$ reconstruction: via $\pi^+\pi^-$ tracks; $EM(\pi^+\pi^-)$ for K_s and $MM(\pi^+\pi^-)$ for proton.
- K⁺+n reconstruction: via K⁺-track and **MM(K⁺)** for neutron.
- Using dE/dx in CDC.

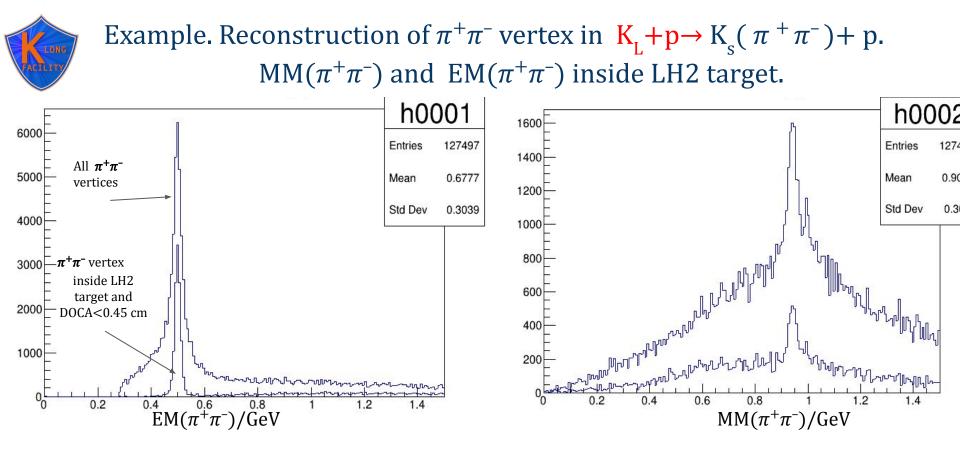
Example. dE/dx in CDC of Gluex Detector .vs. particle momentum for $K_L^+ p \rightarrow K_s^+ p$ and $K_L^+ p \rightarrow K^+ + n$


Rec. Track momentum, GeV/c

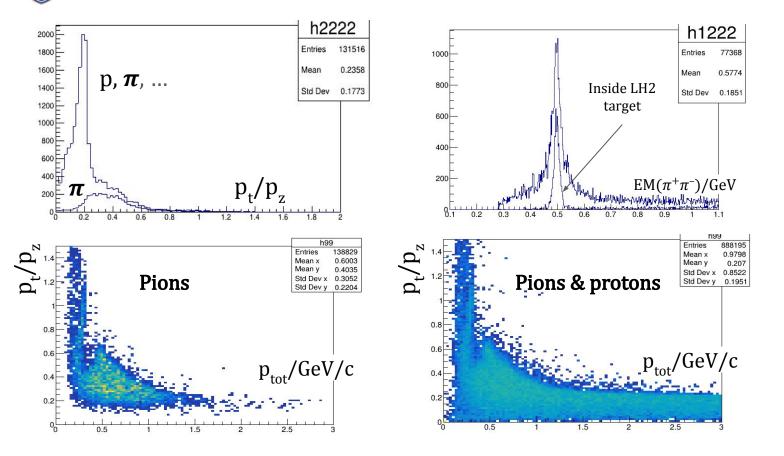
Rec. Track momentum, GeV/c


• Good separation of pions below ~ 1.4 GeV/c and ~ 0.7 GeV/c for K⁺.


Example. Generated .vs. Reconstructed momenta in $K_L^+ p \rightarrow K_s^-(\pi^+\pi^-) + p$.


• Good reconstruction at all generated momenta.

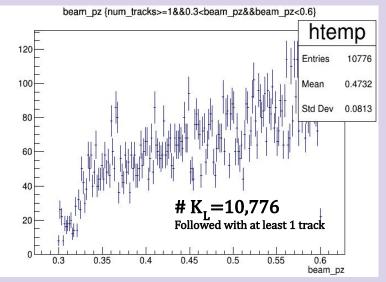
Example. Reconstruction of $\pi^+\pi^-$ vertex for $K_L^+ p \rightarrow K_s^-(\pi^+\pi^-) + p$.



- LH2 target sized in cm as $r \times z = 3$ cm $\times 40$ cm.
- LH2 target is well reproduced by the $\pi^+ \pi^-$ vertex coordinates.
- Diffuse area around r=3 cm is of 1 cm (=>sigma ~0.25 cm).
- Long exponential r-tail is due to K_s lifetime (c τ =2.9 cm)

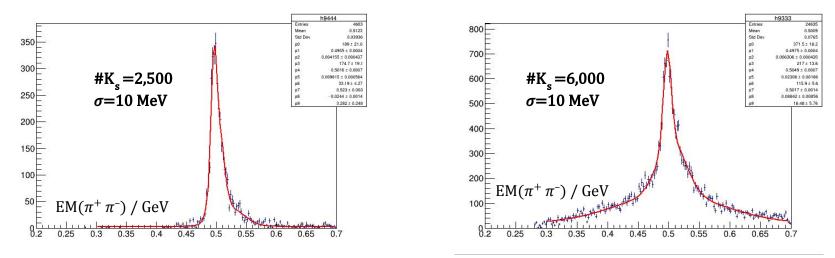
• EM($\pi^+\pi^-$) resolution is obviously better inside the LH2 target while the background is significantly lower.

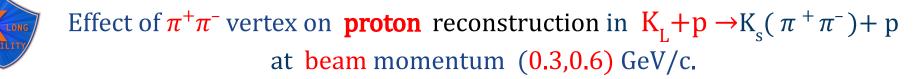
Example. Angular distribution of π^+ , π^- , and p. $K_L^+ p \rightarrow K_s^-(\pi^+\pi^-) + p$.

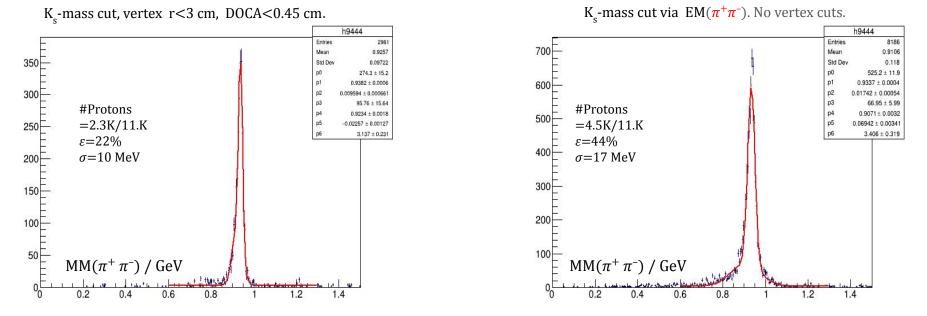


Reconstruction of $K_L^+ p \rightarrow K_s^-(\pi^+\pi^-) + p$ at K_L^- momentum (0.3,0.6) GeV/c. Effect of $\pi^+\pi^-$ vertex.

Hadronic decays and lifetimes

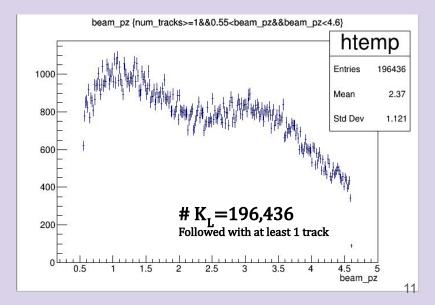

$$K_{s} \rightarrow \pi^{+} \pi^{-}$$
 69.2 % $c\tau = 2.9 \text{ cm}$
 $\rightarrow \pi^{0} \pi^{0}$ 30.7 %



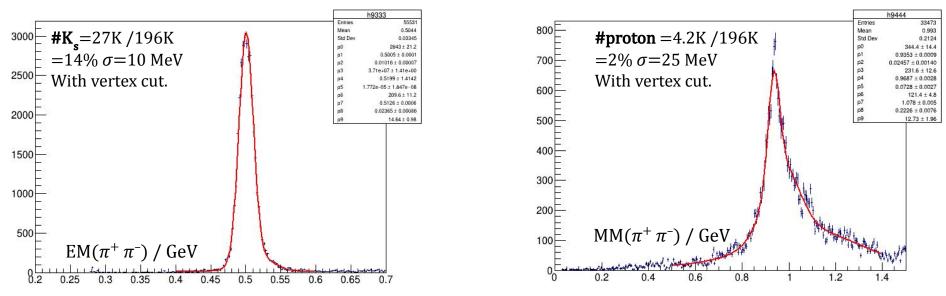

Effect of vertex on $K_s(\pi^+\pi^-)$ reconstruction in $K_L^+ p \to K_s(\pi^+\pi^-) + p$ at K_L momentum (0.3,0.6) GeV/c.

Inside LH2 target r<3 cm , DOCA<0.45 cm

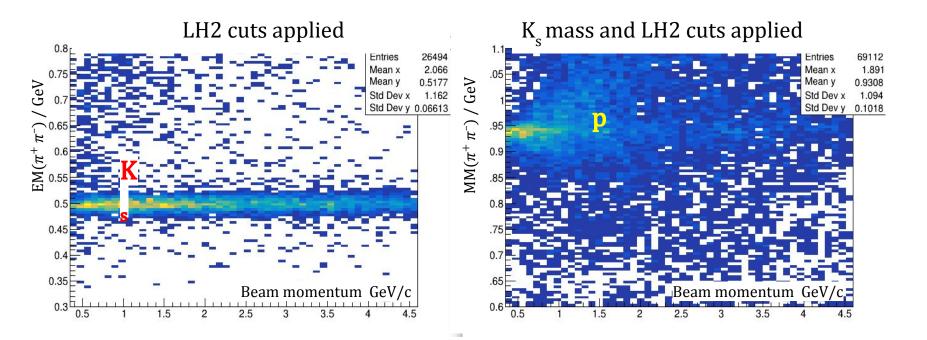
- With **vertex cuts** (left) Rec. Eff. $\sim 25\%$ (=2500/11000), while the sensitivity (=peak/pedestal) = ~ 100 .
- No cuts (right) $\sim 50\%$ (=6000/11000); the sensitivity ~ 10 times lower.

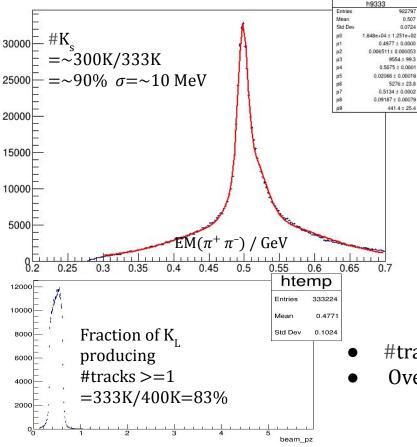


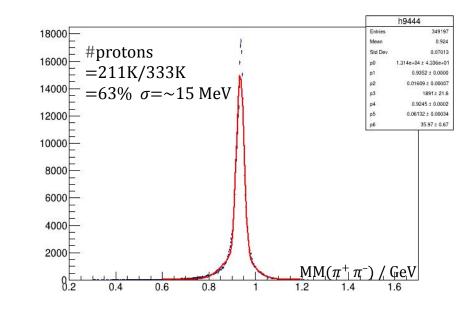
- Inside LH2 reconstruction efficiency of proton drops from ~44% to ~22%.
- Little change of the background, but better MM resolution.



Effect of $\pi^+\pi^-(K_s)$ vertex reconstruction $K_L^+p \rightarrow K_s^-(\pi^+\pi^-)^+p$ at hig K_L^- beam momenta (0.55,4.55) GeV/c.

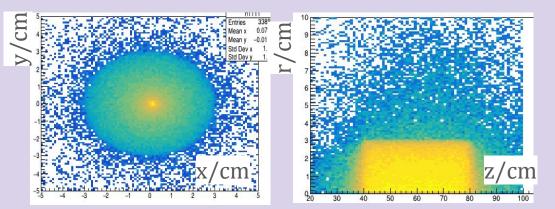

Reconstruction of K_s and p in $K_L + p \rightarrow K_s + p$ at K_L momentum (0.55,4.55) GeV/c. Vertex cuts.

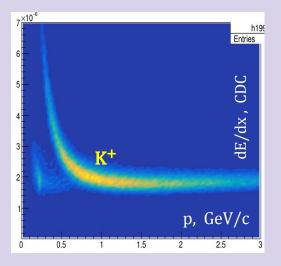

• In wide domain of beam momentum Reconstruction Efficiencies are ~14% for K_s and ~2% for protons.



Reconstruction of K_s and p in $K_L + p \rightarrow K_s + p$ at K_L momentum (0.35,4.55) GeV/c. Effective and Missing mass of $\pi^+\pi^-$ pairs vs beam momentum.

Reconstruction of **proton** in $K_L^+ p \rightarrow K_s(\pi^+\pi^-) + p$ at generated K_L^- energy (0.1,0.3) **GeV**

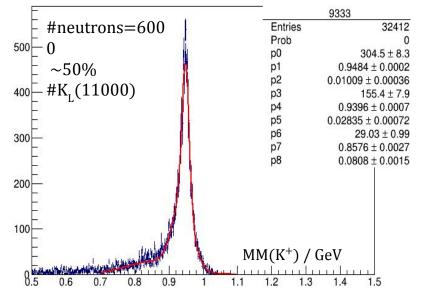

#tracks>=1 & $|EM(\pi^+\pi^-)-m_K| < 20$ MeV. No vertex cuts . Overall Rec. Efficiency = $0.83*0.63 = \sim 53\%$ for protons and $\sim 75\%$ for K_s

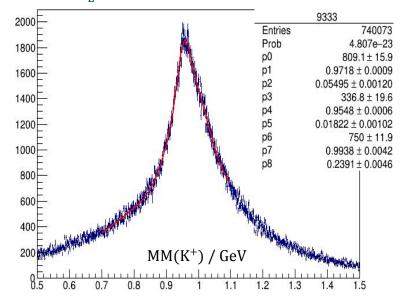


Reconstruction of $K_s + n$ state in $K_L + p \rightarrow K^+ + n$ at K_L momentum (0.35,0.55) GeV/c.

Hadronic decay

K⁺→ $\pi^{+}\pi^{+}\pi^{-}$ 5.6 % c τ =371.2 cm ("stable") → $\pi^{+}\pi^{0}$ 20.7 %



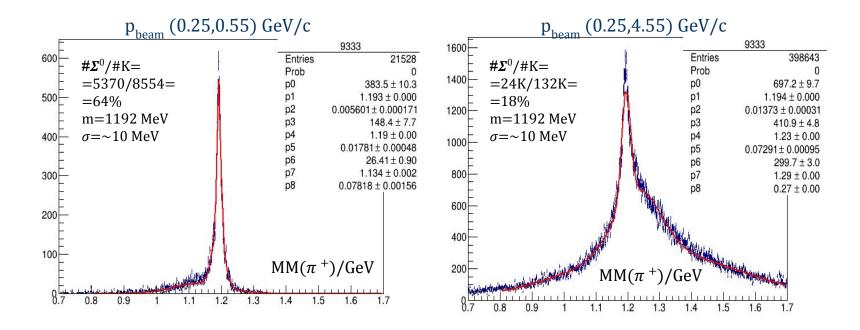

LONG

Reconstruction of neutron in $K_L + p \rightarrow K^+ + n$ with vertex cuts.

K_L momentum (0.35,0.55) GeV/c

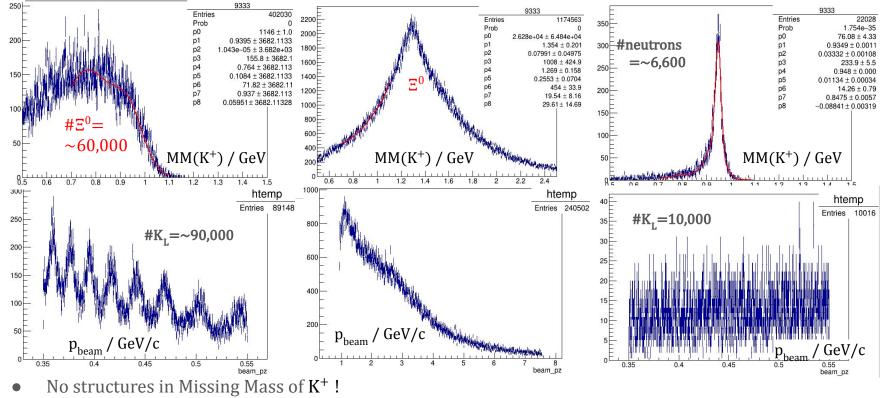
K_L momentum (0.55,4.55) GeV/c

• Reconstruction efficiency of neutrons $\sim 50\%$.



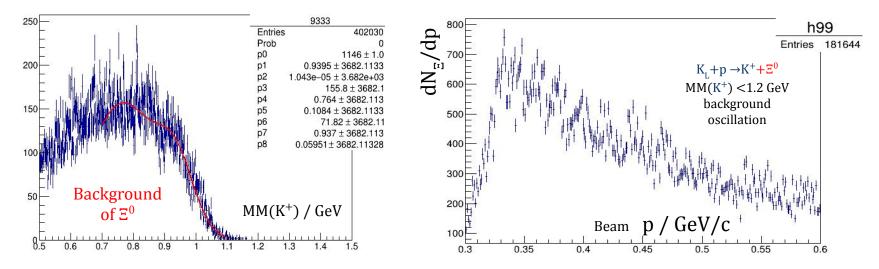
Backgrounds to $K_L + p \rightarrow K^+ + n$

(1)
$$\mathbf{K}_{\mathbf{L}} + \mathbf{p} \rightarrow \pi^{+} + \boldsymbol{\Sigma}^{0}(\boldsymbol{\Lambda}); \quad \mathbf{p}_{\text{Kaon}} > 0$$


- (2) $\mathbf{n} + \mathbf{p} \rightarrow \mathbf{K}_{s} + \boldsymbol{\Sigma}^{+} + \mathbf{n}$; $\mathbf{p}_{neutron} > 2.6 \text{ GeV/c} => \text{low n-flux.}$
- (3) Beam leak from other halls and reconstruction of $K_L + p \rightarrow K^+ + n$

Background reaction $K_L^+ p \rightarrow \pi^+ + \Sigma^0$

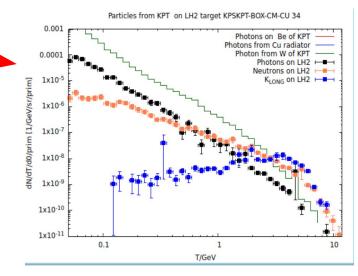
• Well separated from proton and neutron MM peaks at low beam momenta.


K_L +p→K⁺+ Ξ^0 at 0.35<p_K<0.55 GeV/c. Missing Mass of K⁺ and beam leak from other halls (left) vs normal Hall D beam (right)

- At $p_{\text{beam}} = 0.45 \text{ GeV/c}$ the "leak" / "beam" ratio = $\sim 100/10 = \sim 10$; we expect ~ 2 (factor 5).
- The ratio of neutron_peak to leak of " Ξ^{0} " =~300/75=~4; we expect ~5*4=20, i.e. ~**5% background.**

$K_L + p \rightarrow K^+ + \Xi^0$. Background oscillation caused by beam leak.

• The background part shows oscillations (10% amplitude) due to beam leak.



What to do with beam leak background?

1. FLUKA shows that **minum energy of K**_L at LH2 target T=0.1 GeV. => K_L momentum $p_K = 0.33$ GeV/c => $\beta_K = p_K / (T+m_K) = 0.33 / 0.597 = 0.554$ TOF_K=2400[cm]/(30[cm/ns]*0.554)=**144 ns**

 $TOF_{\gamma} = 2400[cm]/(30[cm/ns]*1.000) = 80 ns$

- 2. The difference TOF_{K} $\text{TOF}_{\gamma} = 64 \text{ ns}$, therefore all **beam** K_L's with p>0.33 GeV/c do fit into (0,64) ns interval!
- Provided 128 ns between bunches the following (64,128) ns interval is filled by beam leak only. Therefore this interval may be used to permanently measure /subtract the background.

Conclusion

Final state (FS)	#FS/#K _L / Resol.	#FS/#K _L / Resol.
K _L beam mom.	0.3-0.6 GeV/c	0.5-5.0 GeV/c
$\rightarrow K_{s} + \dots$	53 % / 10 MeV	14 % / 20 MeV
$\rightarrow K_{s}+p$	44 % / 20 MeV	2 % / 25 MeV
\rightarrow K ⁺ +n	50 % / 15 MeV	6 % / 50 MeV
$\rightarrow \pi^+ + \Sigma^0$	64 % / 10 MeV	18 % / 15 MeV

π+π-

- GlueX CDC is an **ideal detector** at K_{L} beam momentum (0.3, 0.6) GeV/c.
- Overage **reconstruction efficiency** $\sim 50\%$ in this region.
- Advantage of $K_L^+ p \to K_s(\pi^+\pi^-) + p$ is that it has **3 charged particles** of low momenta, hence better **resolution** and **vertex** localisation; good cross check for $K_L^+ p \to K^+ + n$.
- **Beam leak** background **does not create problems** for neutron rec. via MM(K⁺).