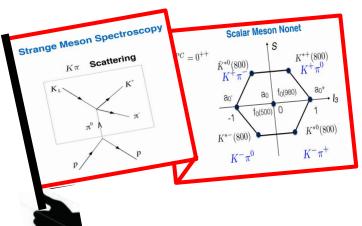


Compact Photon Source and K₁. Beam for Hall D.

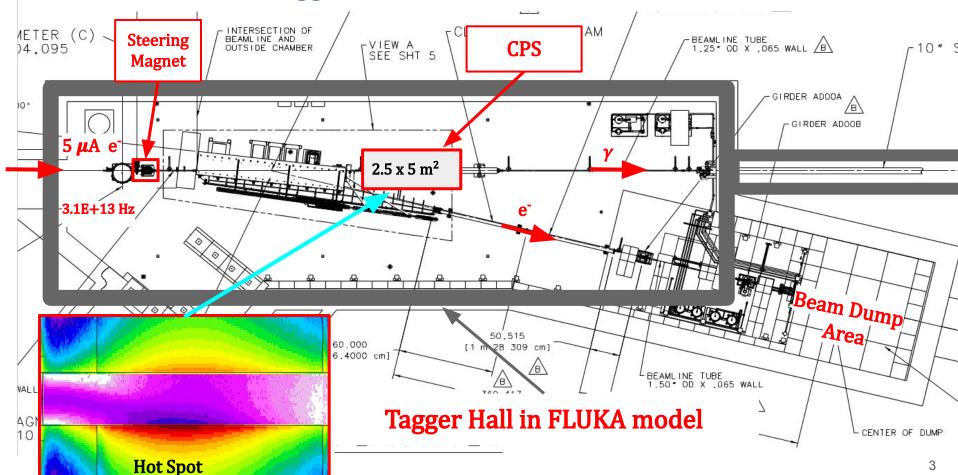


Strange Hadron Spectroscopy with Secondary KL beam in Hall D

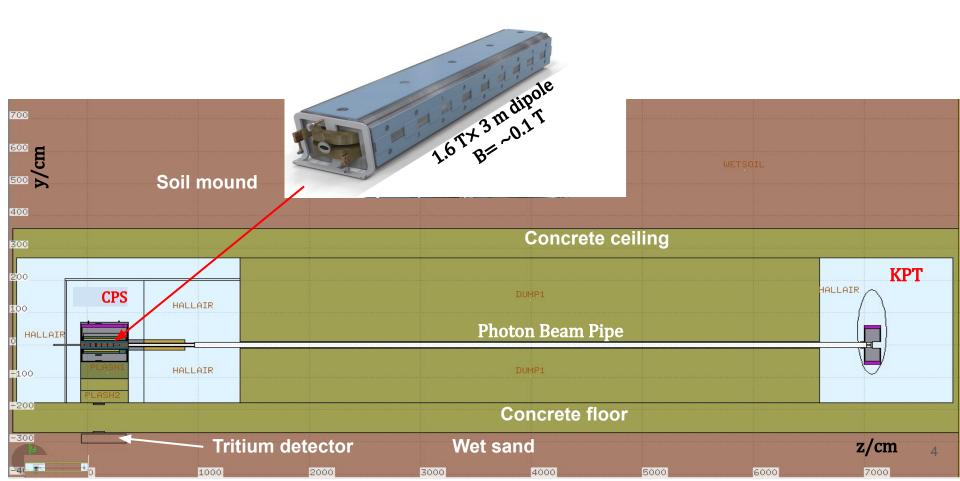
Moskov Amaryan

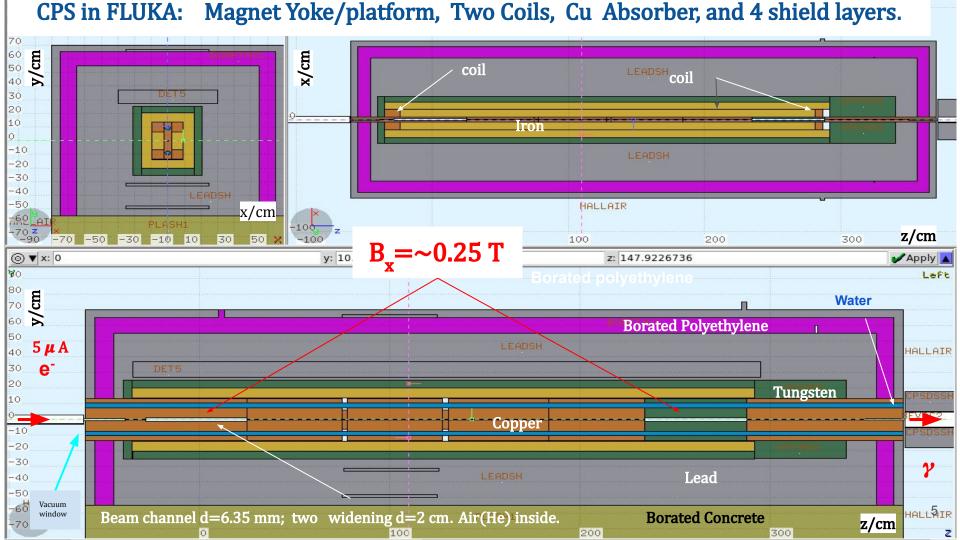
Old Dominion University Norfolk, VA, USA

The FLUKA Simulations for K-long beamline in Hall D.

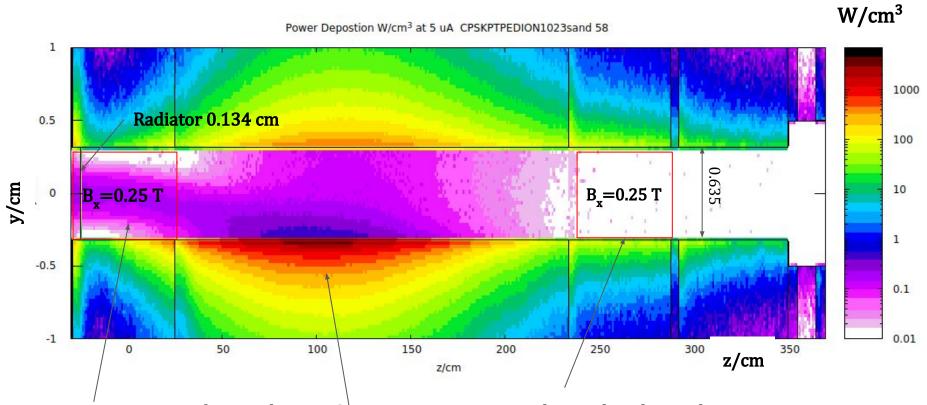

Electron beam 12 GeV, 5 μ A (3.1×10⁺¹³ s⁻¹), FWHM=2.5 mm.

For KLF Collaboration
V. Baturin , Old Dominion University, Norfolk,VA
03/02/2023.

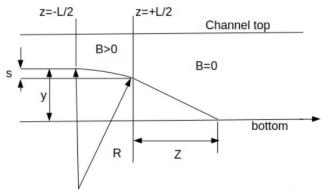

Outline


- 1. **CPS** and **KPT** in FLUKA model. Location, Design, Alignment.
- 2. **Radiation** and **Temperature** inside **CPS**.
- 3. Photon **Beam Quality**.
- 4. **Radiation** in CPS **Magnet** and its **Lifetime**.
- 5. Prompt **Dose and Activation** around CPS.
- 6. Tritium **Contamination** in Soil and Cooling Waters.
- 7. **Lifetime of** construction **materials**.
- Conclusion and Outlook.

CPS location in Tagger Hall. Beam $5 \mu A$, Gaussian, FWHM=2.5 mm.



CPS, Tagger Hall, KPT and Magnet Prototype in FLUKA model.



Source of radiation. Hot spot in the absorber. Power deposition

- Upstream magnet forms the Hot Spot; Downstream cleans the photon beam.
- The **wider is** the Hot Spot **the lower** is deposited power/temperature in the maximum.

Magnetic Field, Beam Channel, and Hot Spot Size.

y-electron entry coordinate.

R-trajectory radius, $R \propto B^{-1}$.

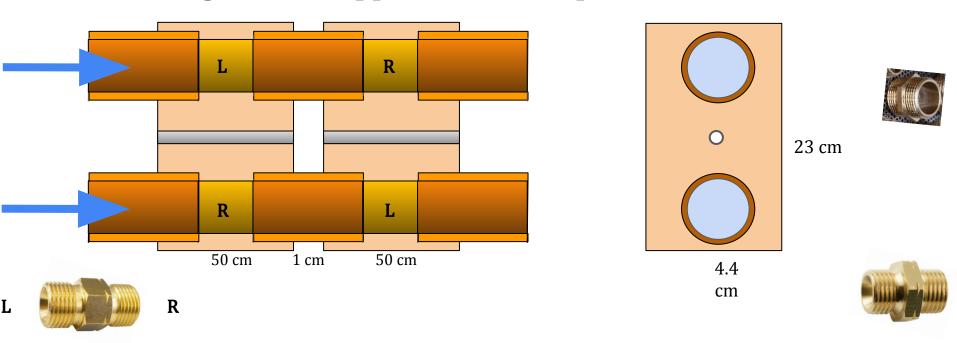
z -counts from **L/2** - **coil area** length, where B>0.

z'-counts from z=0.

 $L_{\rm M}$ - length of Beam Channel and Absorber.

 $\langle z' \rangle = L_{M}/2$ is constrained to be in the middle of Channel.

From two triangles on this figure we find:


$$(R-s)^2 + L^2 = R^2, \quad => \quad s \approx \frac{L^2}{2R},$$

$$\frac{L}{R-y} = \frac{y-s}{z},$$

$$z \approx \frac{R}{L}(y-s) = \frac{R}{L}y - \frac{L}{2},$$

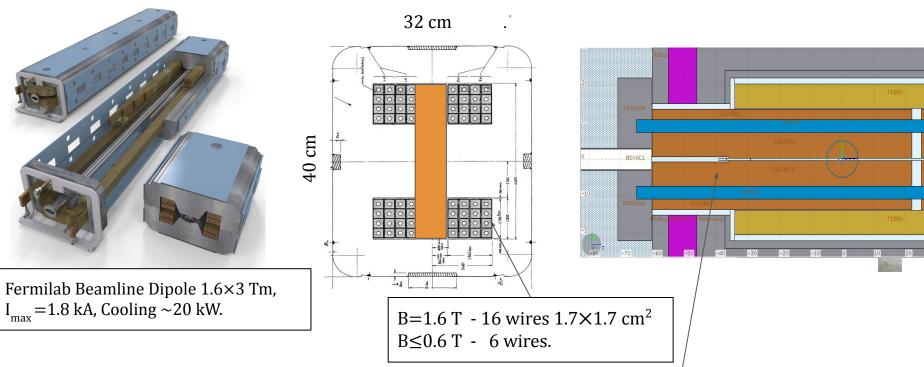
$$< z' > \approx < y > \frac{R}{L},$$

$$rms(z') \approx rms(y) \frac{R}{L} = < z' > \frac{rms(y)}{< y >}.$$

$$rms(z') = 2 < z' > \frac{rms(y)}{d} = \frac{L_M}{d}rms(y)$$

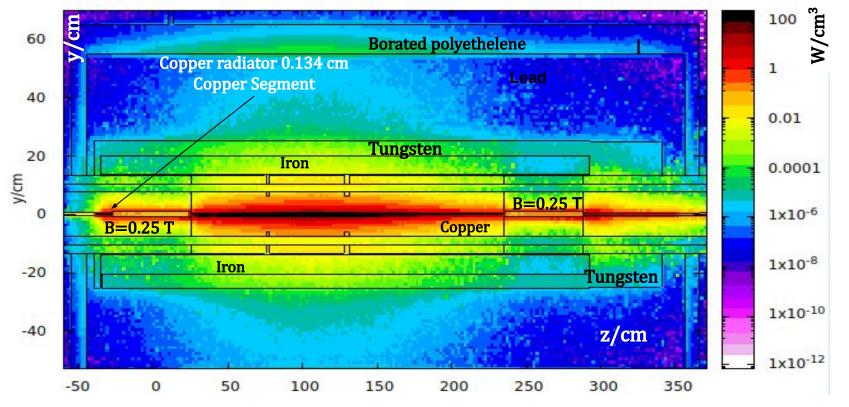
- ullet At given rms(y) and $channel \ length \ L_M$ for a lower power deposition and temperature reduce channel diameter.
- However, keep $d > d_{min} = \sim 2 \text{ rms(y)}$, otherwise beam tail hits the Channel.

CPS Absorber and Alignment.


Segmented Copper Absorber - possible solution.

- Segments $\sim 4.4 \times 20 \times 50$ cm³, **round** beam **hole.** => Edvantage compared square holes.
- (1) No problem of **thermal contact** between 2 parts (if squared hole) and (2) may be **vacuumized**.
- Segments are connected by fittings with **left/right-**hand threads; may be **brazed**.
- Provides direct **copper-water contact** inside segments: => no interface; **better cooling**.

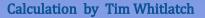
Magnet Yoke as Precise Platform for Absorber



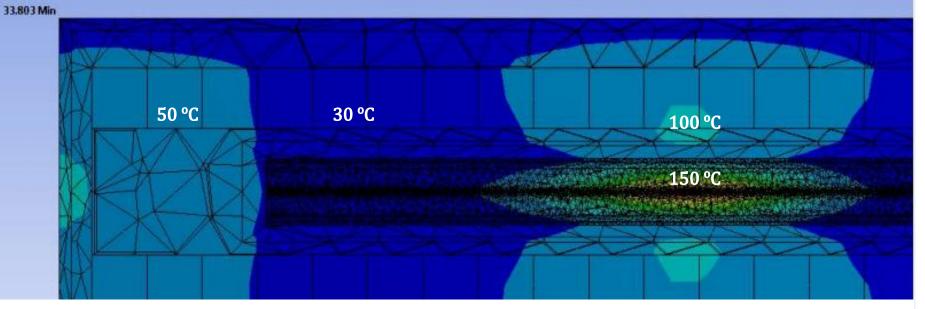
- 1. <u>Iron shield</u> and **precision <u>platform</u>** for Absorber. Specified **flatness** within **500** μ m.
- 2. **Housing for all parts** with narrow beam channels, **including protruded segments.**
- 3. **Precision Assembling** at a bench and **in-hall Alignment with 5 DOF** only.

Energy deposition and Temperature of CPS components.

Power Deposition in -0.5<x/cm<0.5 layer. Coarse mesh 0.5 cm.


- Protruding **copper segment** around Radiator to mitigate lead overheating.
- To-calculations **in progress**. Channel widening in coil area to **reduce dose** rates.

Power breakdown between CPS components.


CPS part	$\mathrm{GeV/e}$	$kW/5 \mu A$
DS Shield (W)	0.063	0.316
US Shield (W)	0.033	0.163
Side Shield (W)	0.013	0.064
Top Water Pipe	0.001	0.005
Bottom Pipe	0.001	0.006
Magnet Pole Right	0.322	1.610
Magnet Pole Left	0.321	1.619
Coils	0.058	0.289
Magnet Yoke	0.101	0.504
Lead Shield	0.006	0.032
Polyethylene (B)	0.002	0.011
Lead Skin	0.001	0.004
Converter (Cu)	0.002	0.010
Total	0.923	4.620

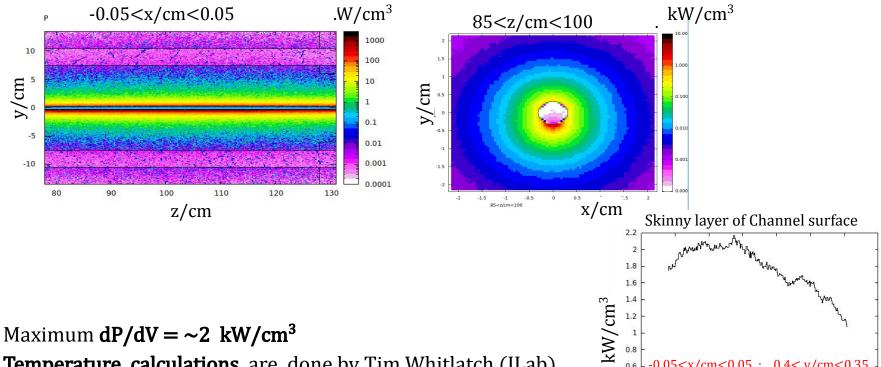
Segment	GeV/e	$kW/5 \mu A$
$1~\mathrm{W/Cu}$	0.230	1.151
2	2.013	10.077
3	4.743	23.744
4	2.034	10.183
5	0.385	1.929
$6~\mathrm{W/Cu}$	0.164	0.822
Radiator	0.002	0.010
Total	9.571	47.916

Total deposition 53 kW out of 60 kW of e-beam.

Temperature field in the entire CPS at perfect thermal contact. For poor thermal contact - in progress.

• Copper $(T_m=1084^{\circ} C)$ in Absorber Channel does not melt: $T < 250^{\circ} C$.

172.14 Max


156.77 141.4 126.03

110.66 95.285

79.914 64.544 49.173

• Lead $(T_m=327^{\circ}\text{C})$ and Iron $(T_m=1538^{\circ}\text{C})$ temperatures - below melting points: $T<100^{\circ}\text{C}$? and 150°C .

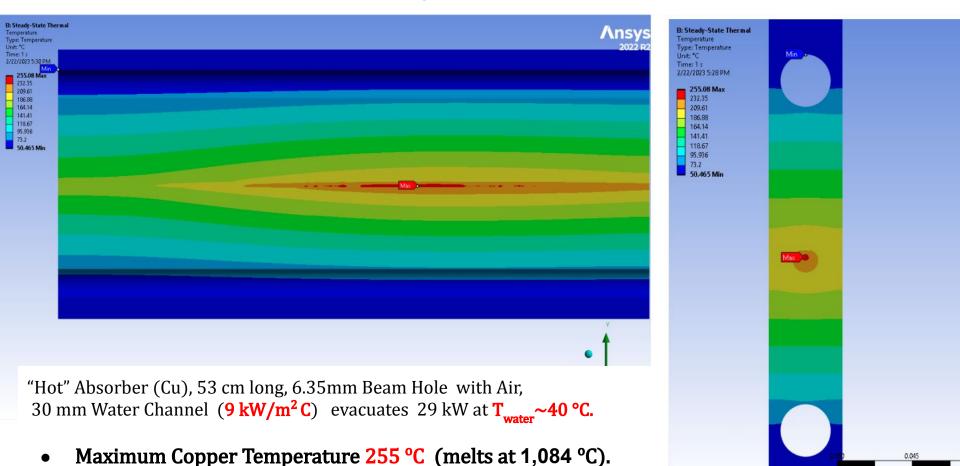
Power Deposition in Hot Segment. Fine mesh 0.05 cm

-0.05 < x/cm < 0.05; 0.4 < y/cm < 0.35

z/cm

110

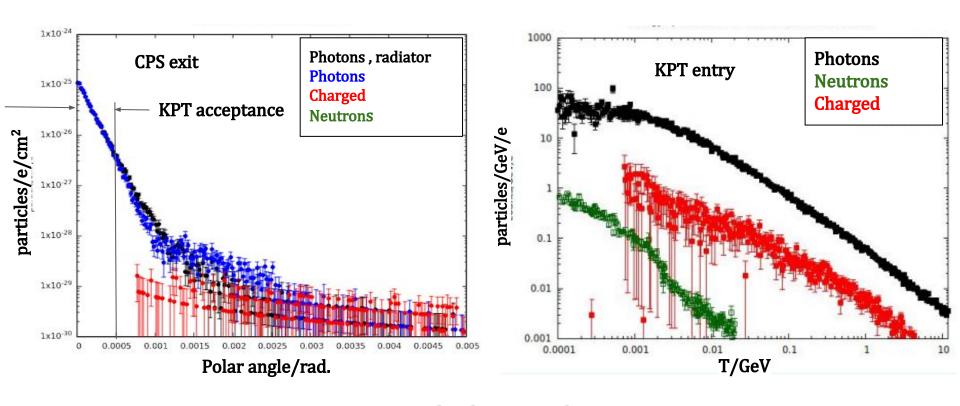
120


100

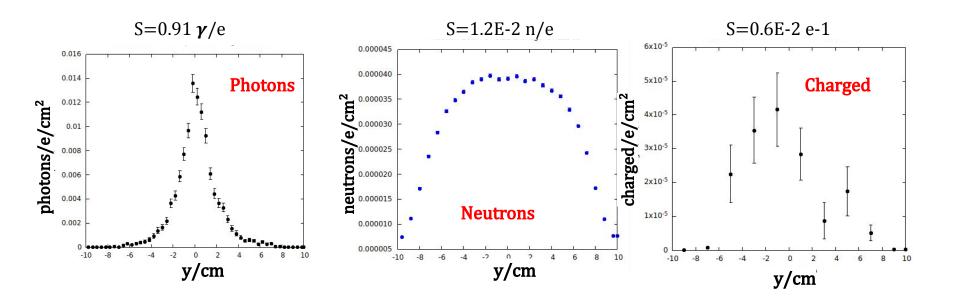
130

140

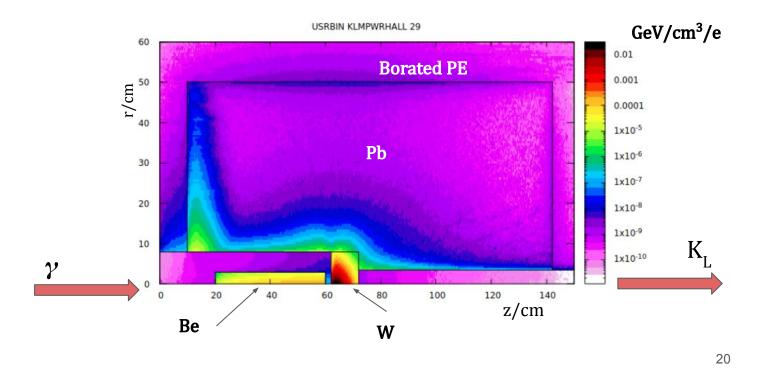
- Maximum $dP/dV = \sim 2 \text{ kW/cm}^3$
- **Temperature calculations** are done by Tim Whitlatch (JLab) using ANSYS and this Power Deposition Map.


Calculation by Tim Whitlatch
Temperature field in the Hot Segment at Heat Transfer Coefficient 9 kW/m²C.

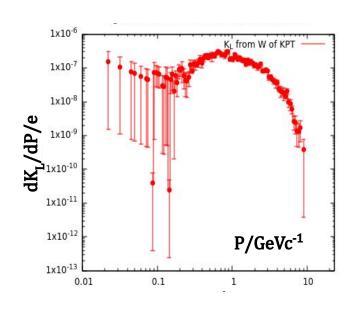
0.022

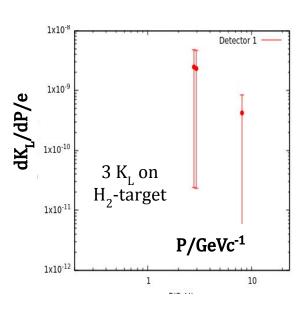

Photon Beam Quality at KPT

Particles exiting from the CPS. Angular profile.


- Photon beam at the CPS exit **looks very clean** (< 1.E-3). Left plot.
- What happens to the beam after 67 m of beam line? Right plot.

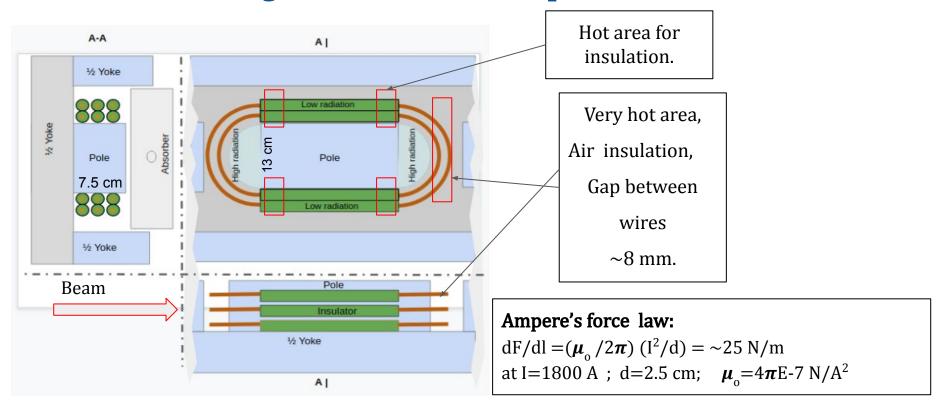
Beam quality at KPT.


- **After 67 m of beam line** the total **background** of charged particles and neutrons is of **2. %**.
- Be target acceptance r=2.5 cm; => **80%** of photon beam hits the Be target of KPT.
- Photon beam **intensity at KPT entry** \sim **2.8 E+13 photons/s.**

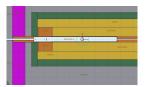

Energy deposition in KPT. Effect of photon beam.

• To-field is **calculated** using this map and **cooling** system **designed** by T. Whitlatch.

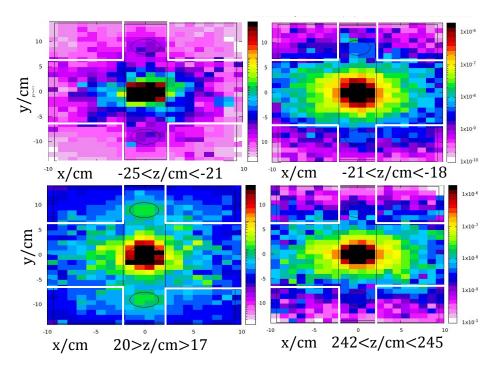
K_L from KPT and on H₂-target of GlueX detector.



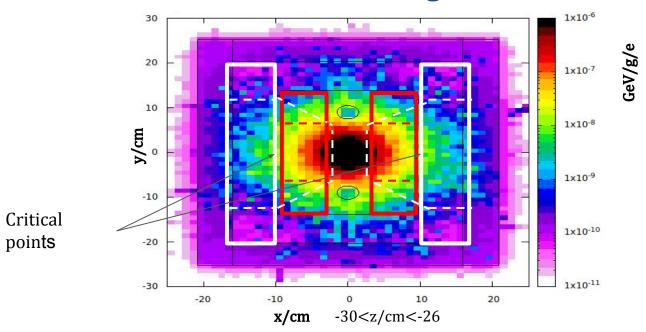
- $\mathbf{K}_{\mathbf{L}}$ beam **intensity** on \mathbf{H}_2 -target ($\Delta\Omega = 1.3\text{E}-3\text{ sr}$) is not a primary goal.
- From the right plot we may estimate it on H_2 target: $dK_1/dt \sim 10^4$ Hz.
- Agrees with the KLF proposal.


Radiation in CPS Magnet and

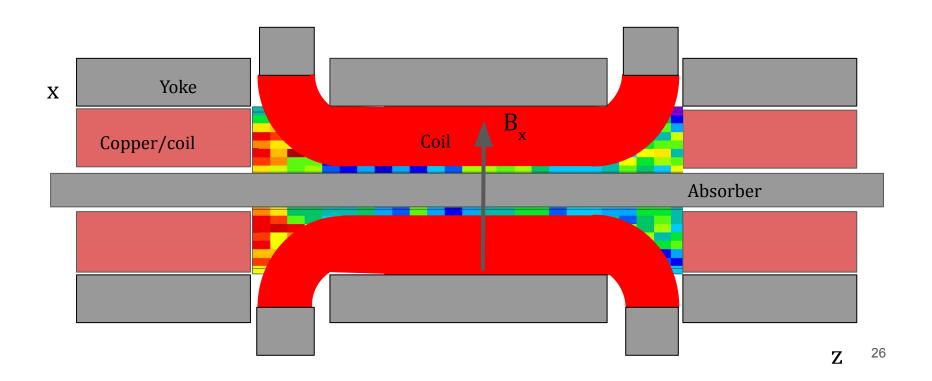
Coil insulation lifetime.


Coil Design and Insulation Exposure to Radiation.

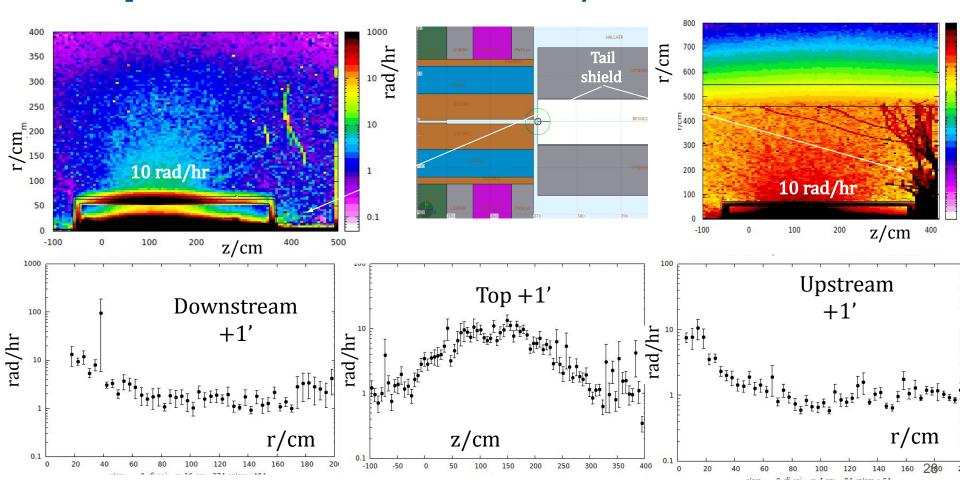
- Attractive force of bent parts $F = 25 \text{ N/m}^* 0.3 \text{ m} = 7.5 \text{ N}.$
- Copper 1.7 cm -wires (tubes) will not touch. Attractive deformation ∼ 12 microns only!



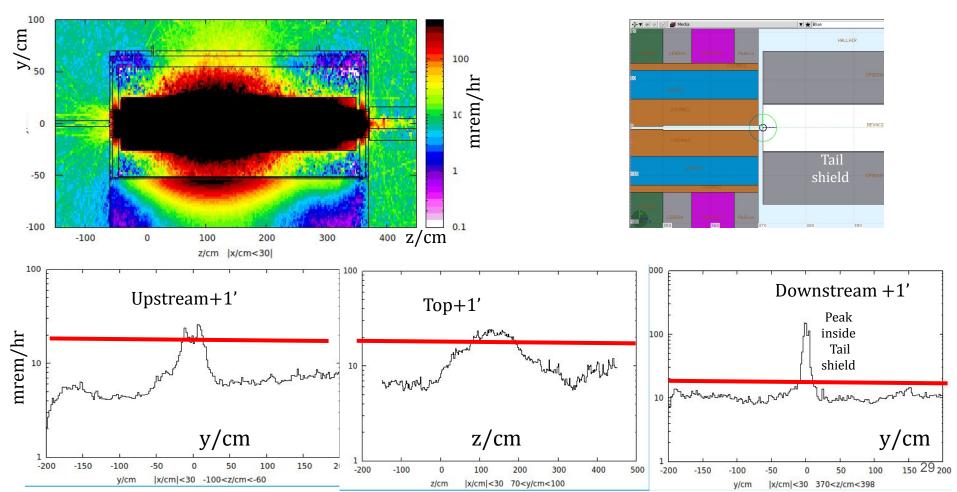
Prompt Dose in Coils and Insulation Lifetime (straight part).


- **Dose 2.E-8 GeV/g/e** \times 1.6E-10 J/Gev=3.2E-18 Jg⁻¹e⁻¹ =3.2E-15 Gy/e;
- Translates to 3.2E-15 [Gy/e] \times 3.E+13 [e/s] \cong 0.1 [Gy/s].
- **Fiberglass** cloth withstands **50 MGy** => **Lifetime** =5.E+8 s = 15 years.
- Bent part dose rate is ~ 10 times higher.

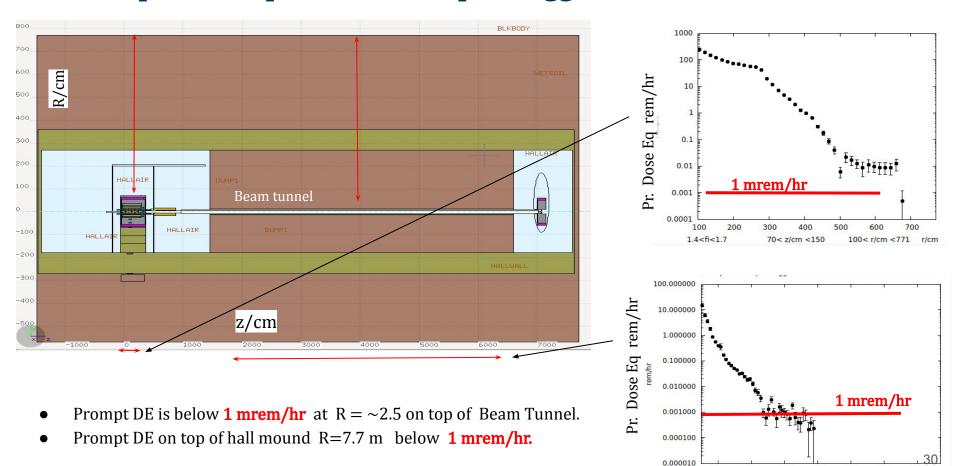
Benefit of wider magnet (+14 cm).


- Dose rate in critical points **0.1 Gy/s** (**2.E-8 GeV/g/e**).
- For 14 cm wider Magnet Insulation Lifetime in Coil return area is of **15 years.**

Tim Whitlatch's solution.

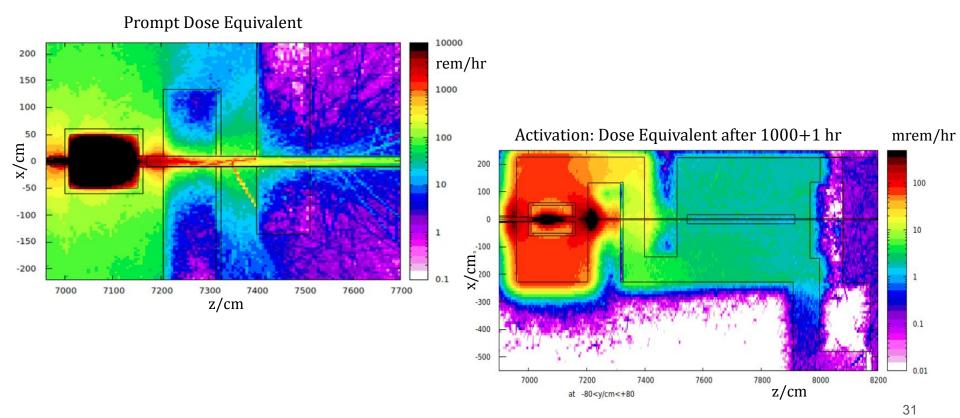

Prompt Dose (equipment) and Activation (human) around CPS

Prompt Dose Rate around CPS < 10 rad/hr. Effect of Tail shield.



Activation After 1000+1 hr < 20 mrem/hr.

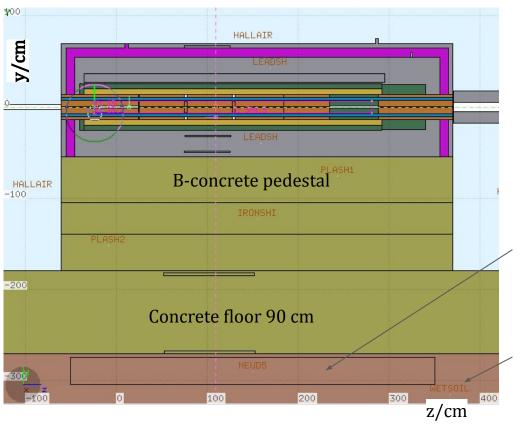
Prompt Dose Equivalent on top of Tagger hall and Beam Channel.



1550 < z/cm < 6500

1.4<fi<1.7

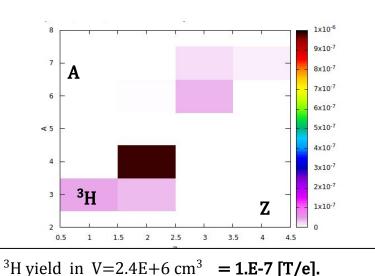
50 < r/cm <771 r/cm

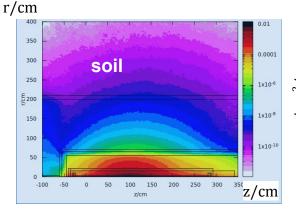

Prompt Dose Equivalent and Activation in KPT Alcove.

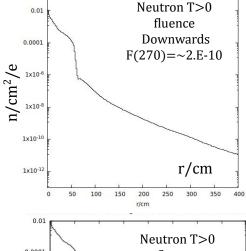
Dose rates meet JLab radiation safety requirements.

Tritium activity in Soil and Cooling Water

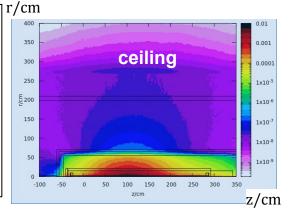
Tritium detector in FLUKA model

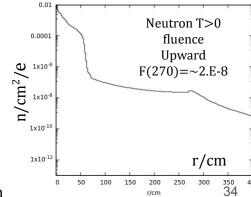


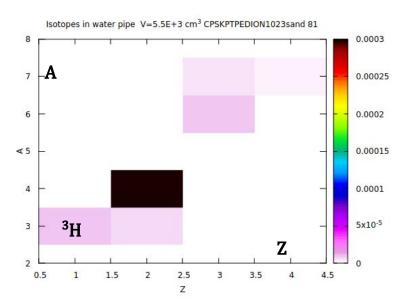

Tritium detector $V=2*0.3*4 \text{ m}^3=$ 2.4 m³


Soil.
Wet sand with 20% of water

Neutron fluence and Tritium in ground waters ($V=2.4 \text{ m}^3$).






³H yield per year **N=**_{1.E-7 [T/e] 3.E+13 [e/s]3.14E+7[s] =**1.E+14**. Activity of soil volume after one year:= - dN/dt=1.E+14/(12*3.14E+7 s) = 2.6E+4 Bq}

- Or $\sim 200 \text{ Bq/L in water} (\sim 20\% \text{ by volume in soil}).$
 - Tritium activity in ground water is 3% of VA drink water limit 7000 Bq/L.

Tritium in water of cooling pipes.

We read the yield of ³H in the cooling water: **1.E-5** [**T/e**]

Number of T nuclei produced in one year: =

 $N_T = 1.E-5 [T/e] 3.E+13 [e/s] 3.14E+7[s] = 1.E+16 [T]$

Actility:

$$-dN_{T}/dt=1.E+16/(12*3.14E+7 s) = 2.6 E+7 Bq$$

This amount of Tritium may be accumulated by tritium absorbers.

Lifetime of various materials from FLUKA simulations.

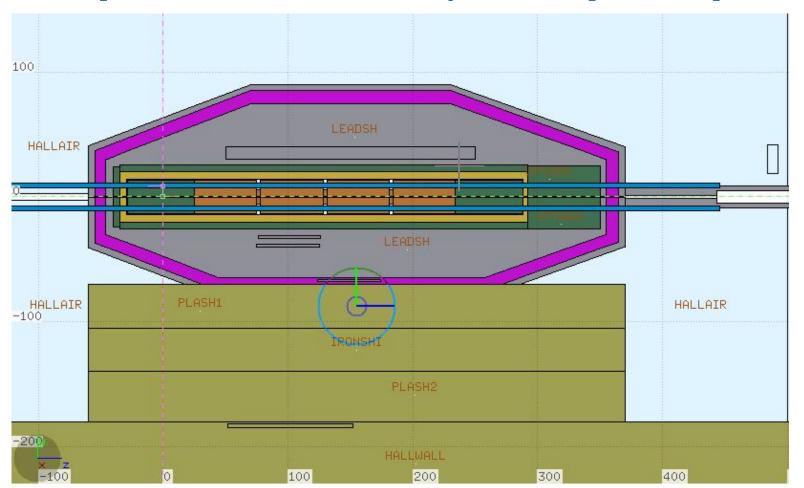
Material lifetime from FLUKA simulations

CPS Material	"Lethal" Dose	Max. Dose rate	Life time	Life time	Comment
	(unit)	(unit)	(unit)	(year)	
SuperNG [16]	$4 \times 10^7 \text{ (rad)}$	10 (rad/h)	$4 \times 10^{6} \; (h)$	≥ 400	Connectors
EVA [12]	$2 \times 10^7 \text{ (rad)}$	10 (rad/h)	$2 \times 10^6 \text{ (h)}$	≥ 200	Cable insulation
Low Den. Polyeth. [12]	$1 \times 10^7 \text{ (rad)}$	10 (rad/h)	$1 \times 10^6 \text{ (h)}$	≥ 100	Cable insulation
Low Den. Polyeth. [12]	$1 \times 10^7 \text{ (rad)}$	$5 \times 10^3 \; (\text{rad/h})$	$2 \times 10^{3} \text{ (h)}$	≥ 0.2	Shield
Alumina ceramics [14]	$10^{21} (n/cm^2)$	$5 \times 10^9 (\text{n/cm}^2/\text{s})$	$2 \times 10^{11} \text{ (s)}$	$\geq 6,000$	Coil ins.
Alum./Silica glass [13]	$10^7 (Gy)$	$0.1 (\mathrm{Gy/s})$	$1 \times 10^8 \text{ (s)}$	≥ 3	Opt. Prop. study
Silica ceramics [14]	$> 0.3 \times 10^{21} \; (\text{n/cm}^2)$	$5 \times 10^9 (\text{n/cm}^2/\text{s})$	$6 \times 10^{10} \text{ (s)}$	> 2,000	3 m Coil insul.
Silica ceramics [12]	$> 10^8 \text{ (Gy)}$	$0.1 (\mathrm{Gy/s})$	10^9 (s)	> 30	Coil insul.
Kapton [7]	$10^7 \; (Gy)$	$0.1~(\mathrm{Gy/s})$	$10^{8} (s)$	≥ 3	Coil insulation
Fiber Glass Cloth [7]	$5 \times 10^7 \text{ (Gy)}$	$0.1 \; (Gy/s)$	$5 \times 10^8 \text{ (s)}$	≥ 15	Coil insulation
Epoxy [12]	$6 \times 10^7 \text{ (Gy)}$	$0.1 \; (Gy/s)$	$6 \times 10^8 \text{ (s)}$	≥ 20	Coil insul.

Blowing He through CPS may prevent oxidation and improve lifetime of some materials.

Conclusion

In our concept, the **CPS** is an **Orientable Unit** containing the **entire Beam Channel**.

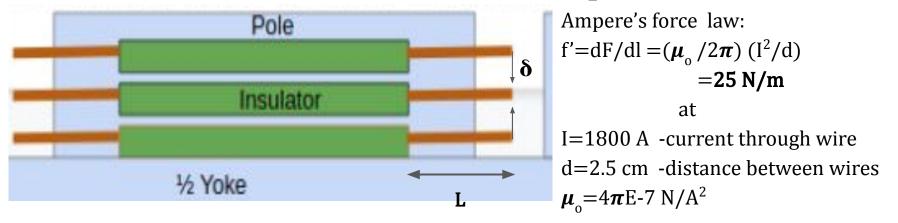

CPS is **surrounded** with several **layers of shielding** materials.

CPS provides a 98% **clear** beam of **2.E+13** photons/s on KPT.

This concept allows **to avoid risks** and provide:

- 1. **No Overheating** of Copper Absorber $(T_{max} = 200^{\circ} \text{ C})$.
- 2. **No Short Circuit** in Magnet Coil for up to **15 years** with fiberglass based insulation.
- 3. **No Prompt Radiation** a > 10 rad/hr around CPS and > 0.1 mrem/hr on top of Tagger Hall.
- 4. **No Activation** > **20 mrem/hr around** CPS after 1000+1 hrs of continuous operation .
- 5. **No Tritium Activity** > **200 Bq/L** in ground and cooling waters. (\sim 3% of VA limit).

Optimized CPS with external layers of "elliptical" shape.

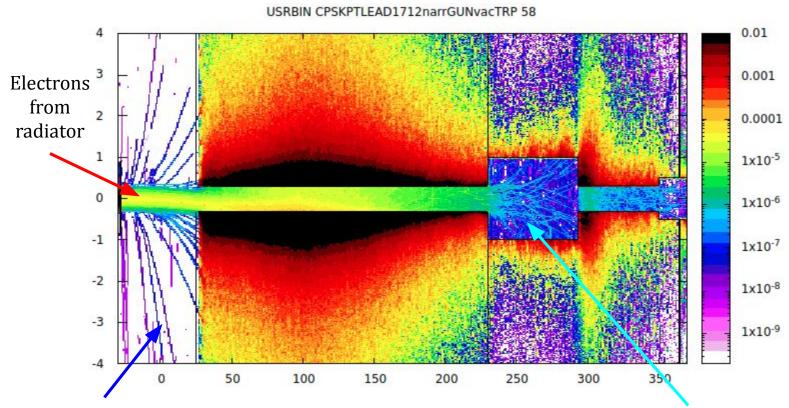

Thank you for your attention.

CPS Components. Weight and Cost.

CPS Component	Material	Density	Cost	Weight	Total Cost
		(g/cm^3)	(\$/kg)	(MetricT)	(\$)
Absorb. In/Out	W	16.3	80.00	0.2	15,500
Lead skin	Pb	11.4	5.8	15.1	87,500
Plastic shield	Borated PE	1.2	20.5	0.5	10,100
Lead shield	Pb	11.4	5.8	36.5	211,400
Left shield	W	16.3	80.0	1.4	108,000
Top shield	W	16.3	80.0	0.8	67,000
Right shield	W	16.3	80.0	1.4	108,000
Bottom shield	W	16.3	80.0	0.8	67,000
Magnet	Fe	7.9	50.0	2.0	101,800
Absorber	Cu	9.0	122.6	0.2	27,400
Upstream shield	W/Cu	15.2	140.0	0.2	21,600
Downstream shield	W/Cu	15.2	140.0	1.2	171,400
CPS				60.9	894,100
Total tungsten				5.8	543,200

- CPS weight 61,000 kg.
- CPS cost without magnet \$793,000.
- Including Tungsten cost \$543,000.

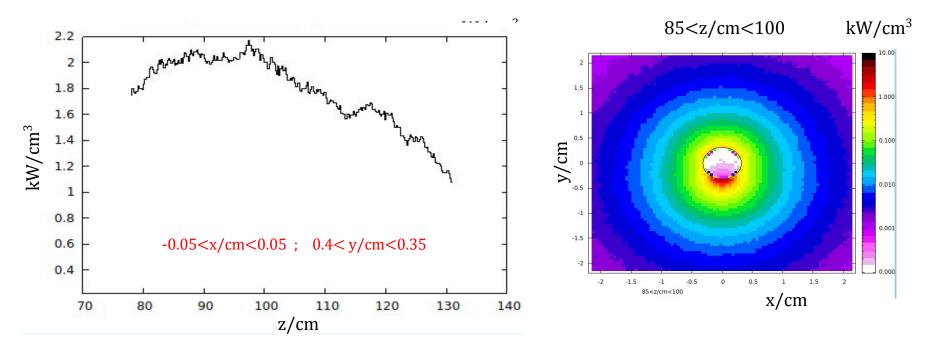
Coil Deformation due to Ampere's force.

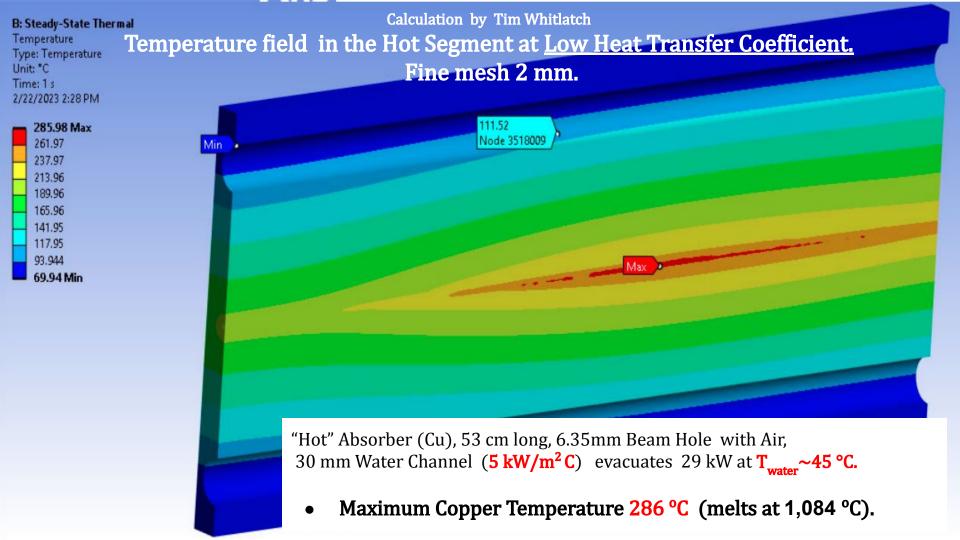

Consider a squared Cu wire $S=(1.7 \text{ cm})^2$, L=20 cm as a rod with fixed end under load including gravitation +25.5 N/m, total f=f'+25.5=50.5 N/m.

From **tabulated formula** the maximum sag at the end of the rod:

$$\delta$$
=3/2 f (L/W)⁴E⁻¹ =1.5*(50/1.2)*(20/1.7)⁴*10⁻¹¹ = **12 microns** (compare with 8 mm gap) where **E=1.2E+11 N/m²** - Young's module **tabulated for copper**.

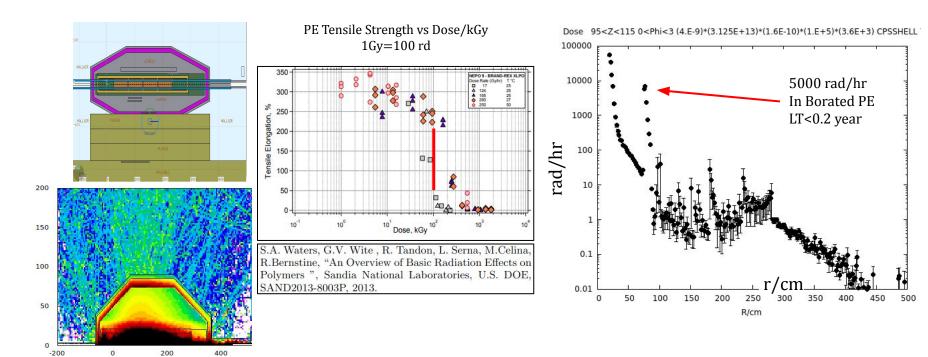
Insulation is not required for Coil return in high radiation area.


Magnet at CPS exit cleans photon beam.

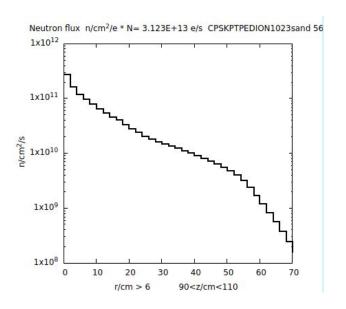

Charged tracks from radiator.

Charged tracks from beam channel.

Power Deposition in Skinny Layer of Hot Segment. Fine map 0.05 cm.



- Maximum $dP/dV = \sim 2 \text{ kW/cm}^3$
- **ANSYS calculations** are done by Tim Whitlatch (JLab) using this Map.


Prompt dose and Polyethylene lifetime.

- BPE elastic properties degrade significantly after 1.E+7 rad / 5000 rad/hr = ~ 0.2 year.
- Borated polyethylene can **not** be used as **construction material**.
- Possible solution:- BPE granules in metal tanks or containers.

https://www.osti.gov/biblio/4640611

Neutron Flux r-profile in Hot Spot. Steel is OK up to 10^{22} n/cm²

https://www.osti.gov/biblio/4640611 Life Time = 10^{11} s = 3200 years. Steel is OK up to 10^{22} n/cm².

Hall D K-Long Facility E12-19-001. Experiment Readiness Review Phase I. Jefferson Lab, 2023 Charge.

• Is there any R&D needed to be done prior to start the construction of the KLong Facility? **No**

 5μ A electron beam on the CPS FWHM=**2.5 mm**, **3.1E+13 e/s**, steering magnet.

• What is the status of the Compact Photon Source (CPS)? Specifically the :

1. Conceptual design: Presented.

2. Evaluation of the **produced radiation**: < 1 mrem/hr on top of Tagger Hall and Tunnel Mounds.

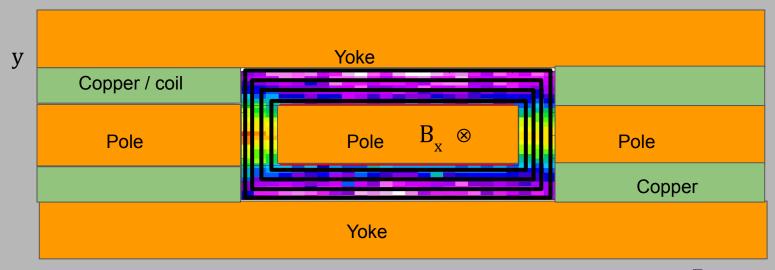
3. **Approximations** in the MC simulations and Code used: Simplified Tagger & KPT Halls. FLUKA2021.2.9.

4. Energy deposition, **Absorber** and **Lead temperature**: 2 kW/cm³, Cu Absorber < 200°C, Pb shield < 100°C.

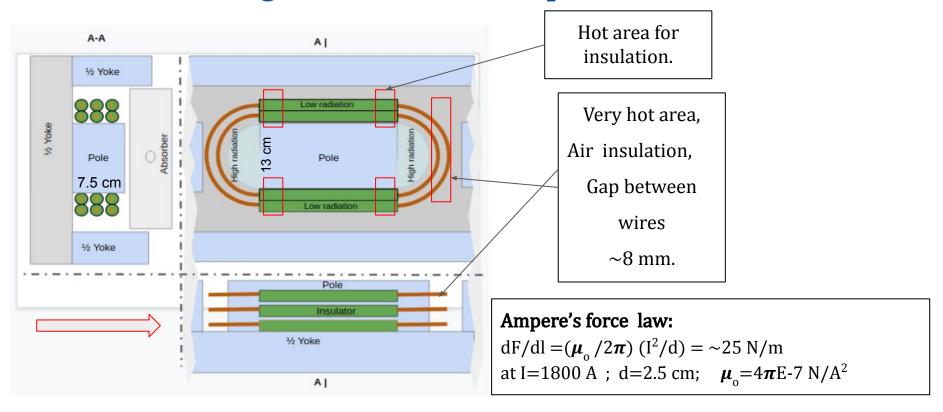
5. Prompt **dose** and **activation** around the CPS (Tagger Hall): Dose < **10** rad/hr, <**20** mrem/hr. Maps available.

6. **Magnet** and **insulation lifetime**: $0.25 \times 0.5 \text{ Tm}$, $I \le 1.8 \text{ kA}$, 4-6 turns, wire $2 \times 2 \text{ cm}^2$, T < 150 °C, LT = 15 years.

7. **Cooling system** and **ground water contaminations**: Tritium Activity **2.6*10⁷ Bq** and **200 Bq/L** after 1 year.


• What will the photon **beam quality** be: **1%** of neutrons and \pm part . FWHM=4 cm, **3E+13** s⁻¹

• What are the **cost and schedule estimates** for the construction of the CPS: **800 k\$** (no magnet).


• Will **civil constructions** be needed to contain the radiation in the Tagger Hall: **No**

• What is **Decommissioning Plan** for CPS and Activated Components: mounted on a platform, **move aside**.

Problem of High radiation in return part of Coils.

Coil Design and Insulation Exposure to Radiation.

- Attractive force of bent parts $F = 25 \text{ N/m}^* 0.3 \text{ m} = 7.5 \text{ N}.$
- Copper 1.7 cm -wires (tubes) will not touch.

Leakage Current between wires.

Current through gas:

$$\frac{dI/ds [A/cm^2]}{dI/ds [A/cm^2]} = n [e/cm^3] \times v [cm/s] \times e [C]$$

- What is concentration of electrons n?
- 2. What is the drift velocity of electrons \boldsymbol{v} ?

1. What is n and Ionisation in Magnet Coil.

$$dI/ds [A/cm^2] = n [e/cm^3] \times v [cm/s] \times e$$

Assume **maximum dose D in space between coil windings** is D = 1.E-5 [GeV/g/e] ($\sim 10 \times$ of FLUKA estimate).

Assume 10 eV is required to produce one electron -ion pair.

Dose D translate to ion pair production $\sim 1.E+3[pair/g/e] = 1.E-5 [GeV/g/e] / 1.E-8 [GeV]).$

Ion pair production rate **per unit of mass** is at beam intensity 3.E+13 [e/s]:

$$dN/dt = 3.E+16 [pair/g/s] = 1.E+3 [pairs/g/e] \times 3.E+13 [e/s].$$

Assume we have 1 cm of argon between windings (ϱ_A =1.7E-3 [g cm⁻³] = ~2.E-3).

Air – 1.3E-3; He – 0.17E-3

So we find the ion **production rate between coil wires**:

$$dn_p/dt = (dN/dt) \varrho_A = 3.E + 16 [pairs g^{-1} s^{-1}] \times 2.E - 3 [g cm^{-3}] = 6.E + 13 [pair cm^{-3} s^{-1}]$$

This rate is **balanced by recombination** of argon ions and electrons.

1. What is n. Ionisation in Magnet Coil and Leakage Current.

$$dI/ds [A/cm^2] = n [e/cm^3] \times v [cm/s] \times e$$

 $dn_p/dt = 6.E + 13$ [pairs cm⁻³ s⁻¹] is balanced by recombination of argon ions and electrons defined as:

$$dn_r/dt = \alpha n_+ n_-$$
, where $\alpha = 2.E-10$ [cm³ i⁻¹ s⁻¹] recombination coeff. for Argon.

$$(\alpha = \sim 1.E-8 \text{ [cm}^3 \text{ i}^{-1} \text{ s}^{-1}] \text{ for He, and } \alpha = 1.E-6 - 1.e-7 \text{ for Air.})$$

Assuming equal densities $\mathbf{n}_{\perp} = \mathbf{n}_{\parallel} = \mathbf{n}$ for the equilibrium density of electrons \mathbf{n} we write:

$$\alpha n^2 = dn_p/dt = 6.E+13$$
 [pairs cm⁻³ s⁻¹] from the previous slide and

$$n^2 = \alpha^{-1} dn_1/dt = 0.5E + 10$$
 [pairs s cm⁻³] × 6.E + 13 [pairs cm⁻³ s⁻¹] = 3.E + 23 (pairs/cm³)².

- The equilibrium **density of electrons** yields $n = 6.E+11 \text{ (pairs/cm}^3).$
- **Density of electrons** is **proportional** to the gas specific factor $(\alpha^{-1}\varrho_A)^{\frac{1}{2}}$.

2. What is w and Electric Field between Wires at 2 kA current.

What is Voltage between windings?

Copper resistivity $\kappa = 1.7E-6$ [Ohm·cm]; $L_w/S_w = 100$ cm/3 cm² = 25 cm⁻¹

=> Voltage between windings (
$$V = I \times R_w$$
 where $R_w = \varkappa \times L_w / S_w$)

$$V = 2000 \text{ [A]} \times 1.7\text{E-6 [Ohm·cm]} \times 25 \text{ [cm}^{-1} \text{]} = 2.\text{E-6} \times 5.\text{E+4 [Ohm·A]}$$

$$V = 0.1 V.$$

From Top Plot (1) we see drift velocity as v=v(E/P) where

E -electric field, P=gas pressure.

In our case
$$E=0.1 [V cm^{-1}]$$
; $P=\sim 1000 [mmHg] =>$

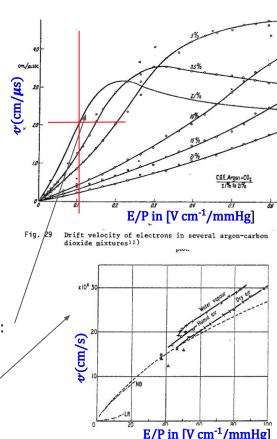
$$E/P=1.E-4$$
 [V cm⁻¹/mmHg]

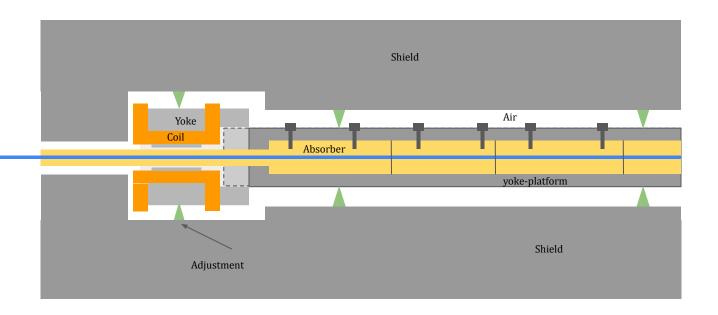
From Top Plot we read $\psi(0.1)=2.E+6$ [cm/s] and linear interpolation yields:

$$v(1.E-4)=2.E+3$$
 [cm/s].

From Bottom Plot for air we find v(1.E-4)=5.E+1 cm/s.

(1) F. Sauli, "PRINCIPLES OF OPERATION OF MULTIWIRE PROPORTIONAL AND DRIFT CHAMBERS",




Figure 5. Electron drift velocity in dry air, humid air and water vapour as a function of reduced electrical field. Pressure readings reduced to temperature of 20 °c; humd air, p_{*}/p_{*} = 16%. Broken line, Townsend and Tizard 1913; △, Raether; □, Rieman 1944; NB, Nielson and Bradbury 1937; LR, Lowke and Res. 1963.

2. What is leakage current between wires.

Current density between windings:

- Leakage is of 2.E-5 of the wire current. It does not affects the coil performance.
- For Helium the leakage is ~10 times lower due to the gas specific factor $\psi(\alpha^{-1}\varrho_{He})^{1/2}$.

(1)

