CPS design from Tim in FLUKA. Magnet\&Field from Hovanes.+Str. Magnet.

Segmented 14 cm Absorber and Iron Plate thickness.

- B-field and magnet dimensions $44 \times 48 \mathrm{~cm}^{2}$ from Hovanes. Lead \& PE scales in 2 " $\times 4$ " $\times 8^{\prime \prime}$ blocks.
- Iron plate thickness is dictated by the temperature of the adjacent layer of lead.
- Lead T^{0} - to be determined from ANSYS calculations for the central part between coils.

Energy Deposition in $6 \times 6 \mathrm{~mm}^{2}$ Channel of Absorber.

USRBIN bentcoil040723-65-m20long 99

Activation after 1000+1 hrs. NO BPE. In progress.

Effect of a cavity for bent coil return part. To be fixed

- The CPS diameter to be optimized: 5 cm in lead radius translates to ~ 5000 kg and $\sim \$ 35,000.00$

Bent Coil lifetime.

Reference 2.E-8 GeV/g/e => LT $\sim 15-30$ years
2. $\mathrm{E}-9 \mathrm{LT}=>\sim 150-\mathbf{3 0 0}$ vears.

Bent Coil lifetime. Magnet \& Field Map from Hovanes + Steering magnet.

US coil Pr.Dose $\left[\mathrm{GeV} / \mathrm{cm}^{3} / \mathrm{e}\right]<2 . E-8$ bentcoil040723-65-m12 96

Downstream magnet coil.
Max Dose~2.E-9 GeV/cm ${ }^{3}$ /e
$=>$ Lifetime 150-300 years. (2.E-8 =>15-30 Years)
300-600 years with W plate between coil and Absorber.

Things to do proceed with No-W-model.

1. Select iron bar sickness.
1.1 Produce Power deposition map for central part of the Absorber (V.B.) 1.2 Perform ANSYS calculations (T.W.).
2. Optimization of the lead shield sizes (V.B.).
3. Optimization of BEam Channel (V.B.).
