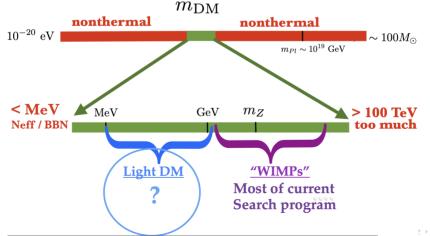
<ロト < 部 × ミト < ミト ミ の へ · 1/9

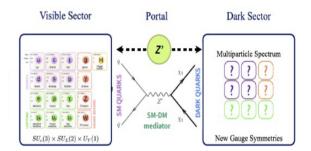

Probing the dark sector and "new" muon-philic forces at KLF facility

Mariangela Bondí INFN - Sezione di Catania

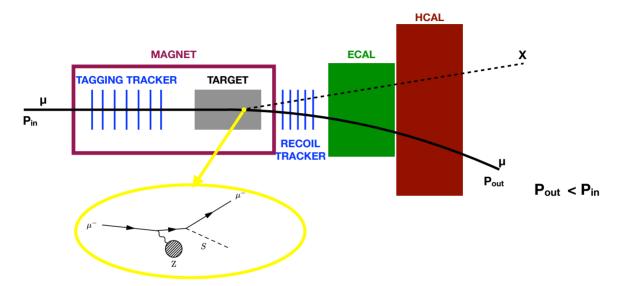
KLF Collaboration Meeting September 19, 2023 $\underset{000}{\mathsf{Experimental Setup}}$

Dark Matter

- Dark Matter is there but we know nothing about the particle content of DM
 - Plenty of cosmological/ astrophysical observations: CMB anisotropies, galaxy rotation curves, gravitational lensing, cluster collisions...
- No hints on DM particle properties (mass, cross section)
- Common assumption: thermal origin of DM:
 - DM in thermal equilibrium with SM in early Universe. Current relic abundance set by the strength of the SM-LDM interaction ("freeze-out mechanism")
 - constrain on available mass range
- Light Dark Matter: mass range 1 MeV \div 1 GeV


E▶ ◀ Ē▶ Ē ∽ Q · 2/9

Experimental Setup


Muon Missing Momentum experiment @ KLF $_{\rm OOO}$

Muon-philic forces

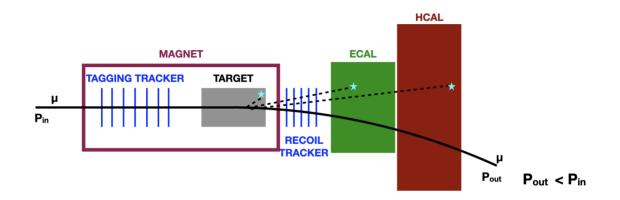
- Sub-GeV DM \hookrightarrow Hidden Sector^a
 - Matter neutral under SM^b
 - LDM needs light new forces to explain thermal origin;
 - Would be overproduced without light "mediators";
- In a well-motivated class of such models, DM interacts predominantly with muons through a new force carrier;
 - New scalar/vector particle couples to muons decays invisibly to DM^c
- Muon-specific forces are also well-motivated independently of any possible connection to dark matter. They can account g-2 anomaly.
- How do we look for light new mediators?
- For a comprehensive review: 1707.04591, 2005.01515, 2011.02157
- ^b Very small electric charges
- c 2305.01715, 1804.03144, Phys. Rev. D 95, 115005 (2017)

Missing Momentum Muon-beam Experiment $a \ la \ M^3$

Requirements^a

- high-intensity O(GeV)-muon beam
- thick active-target (O(20X0))
- compact detector
- \bullet momentum resolution < 1%

^a Similar effort proposed @ FermiLab - 1804.03144


Introduction

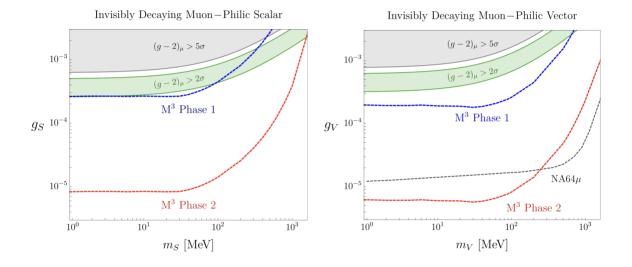
Experimental Setup

Muon Missing Momentum experiment @ KLF

(ロ)、< (回)、< (目)、< (目)、< (目)、< (目)、</p>

Missing Momentum Muon-beam Experiment - Background

Reducible background

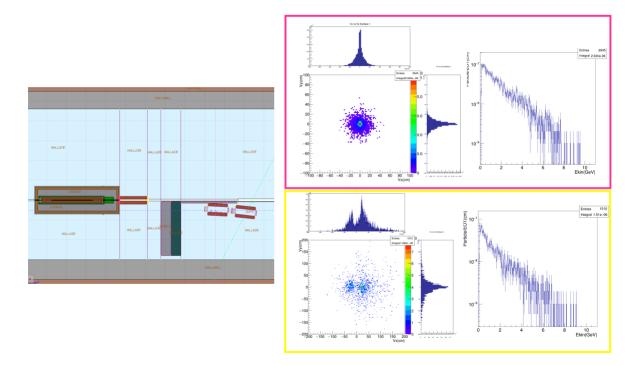

- Single bremsstrahlung: $\mu N \rightarrow \mu N \gamma$
- Bremsstrahlung-initiated hadronic events: $\mu N \rightarrow \mu N \gamma; \gamma \rightarrow$ hadrons
- Muon pair production: $\mu N \rightarrow \mu \mu$

Irreducible background

- Neutrino pair production
- Moller + CCQE: $\mu e \rightarrow \mu e$; $ep \rightarrow n\nu_e$

Missing Momentum Muon-beam Experiment - M³ Reach

The experiment promises to cover an incredible range of parameter space. M^3 example:

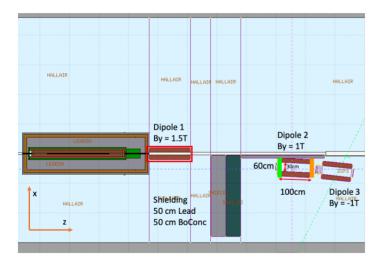


- $\bullet\,$ muon beam $\sim\,15~{\rm GeV}$
- Phase 1: 10¹⁰ MOT
- Phase 2: 10¹³ MOT

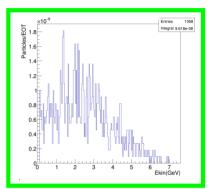
Experimental Setup

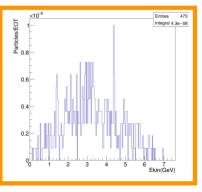
Muon Missing Momentum experiment @ KLF ●○○

Muon Flux @ KLF - old geometry

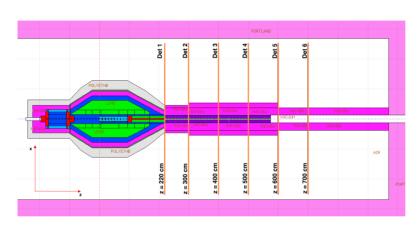


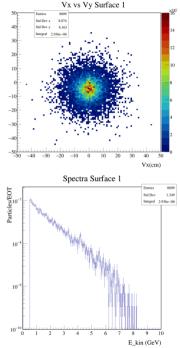
- \bullet Estimated muon flux at CPS exit ${\sim}3\text{E-6}$ muon/EOT
- $\bullet~$ Bending magnet ${\sim}1.5 T$


xperimental Setup


Muon Missing Momentum experiment @ KLF $\circ \bullet \circ$

Missing Momentum @ KLF - old geometry


- Implemented a passive shielding for photons and neutrons
- ullet no-optimized tracker system: 2 magnet ${\sim}1.5{\mathsf{T}}$



Experimental Setup

Muon Flux @ KLF - new geometry

- In coordination with KLF collaboration (Pavelm, Hovanes, Tim...) we started to investigate the possibility of making use of the muon beam (in a parassitic experiment) in this new configuration
- Estimated muon flux 3E-6 muon/EOT
- We are exploring if the M3 experimental setup is compatible in terms of weight, size with the CPS final design

