

K_L-Beam Facility at Jefferson Lab

Hovanes Egiyan

Jefferson Lab

(for KLF Collaboration)

Overview

- > Introduction
- > Physics Motivation
- > Hall D at Jefferson Lab
- > KLF facility
 - Compact Photon Source (CPS)
 - Kaon Production Target (KPT)
 - Kaon Flux Monitor (KFM)
- > Status of the project
- > Conclusions and Outlook

KLF Experiment

- ➤ Use CEBAF electron beam to create a tertiary K_L beam to study strange hadron spectroscopy.
- > Use existing GlueX experimental setup in Hall D that has been used to study meson spectroscopy in photoproduction.
 - Very good detector system for studying exclusive final states.
- \triangleright Create intense K_L flux (~10⁴ kaons/s) on cryo-target.
- Experimental proposal approved by JLAB Program Advisory Committee in 2020.
 - 100 days on LH₂ target
 - 100 days on LD₂ target.
- > Estimated cost to JLAB of ~\$2.3M.
- Formal KLF collaboration is currently being formed to construct the equipment and to conduct the experiments.
 - New collaborators are welcome.

Proposal for JLab PAC48

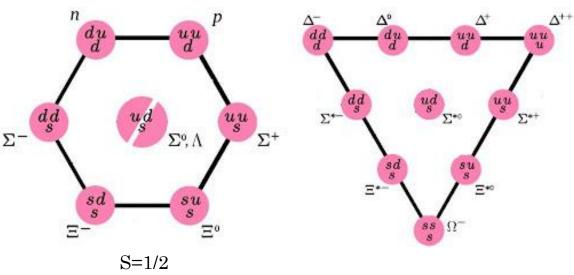
Strange Hadron Spectroscopy with Secondary K_L Beam in Hall D

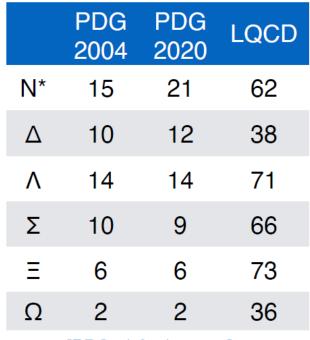
Experimental Support:

Shankar Adhikari⁴³, Moskov Amaryan (Contact Person, Spokesperson)⁴³, Arshak Asaturyan¹, Alexander Austregesilo⁴⁹, Marouen Baalouch⁸, Mikhail Bashkanov (Spokesperson)⁶³, Vitaly Baturin⁴³, Vladimir Berdnikov^{11,35}, Olga Cortes Becerra¹⁹, Timothy Black⁶⁰, Werner Boeglin¹³, William Briscoe¹⁹, William Brooks⁵⁴, Volker Burkert⁴⁹, Eugene Chudakov⁴⁹, Geraint Clash⁶³, Philip Cole³², Volker Crede¹⁴, Donal Day⁶¹, Pavel Degtyarenko⁴⁹, Alexandre Deur⁴⁹, Sean Dobbs (Spokesperson)¹⁴, Gail Dodge⁴³, Anatoly Dolgolenko²⁶, Simon Eidelman^{6,41}, Hovanes Egiyan (JLab Contact Person)⁴⁹, Denis Epifanov^{6,41}, Paul Eugenio¹⁴, Stuart Fegan⁶³, Alessandra Filippi²⁵, Sergey Furletov⁴⁹, Liping Gan⁶⁰. Franco Garibaldi²⁴, Ashot Gasparian³⁹, Gagik Gavalian⁴⁹, Derek Glazier¹⁸, Colin Gleason²², Vladimir Goryachev²⁶, Lei Guo¹⁴, David Hamilton¹¹, Avetik Havrapetvan¹⁷, Garth Huber⁵³, Andrew Hurley⁵⁶, Charles Hyde⁴³, Isabella Illari¹⁹, David Ireland¹⁸, Igal Jaegle⁴⁹, Kyungseon Joo⁵⁷, Vanik Kakoyan¹, Grzegorz Kalicy¹¹, Mahmoud Kamel¹³, Christopher Keith⁴⁹ Chan Wook Kim¹⁹, Eberhard Klemp⁵, Geoffrey Krafft⁴⁹, Sebastian Kuhn⁴³, Sergey Kuleshov², Alexander Laptev³³, Ilya Larin^{26,59}, David Lawrence⁴⁹, Daniel Lersch¹⁴, Wenliang Li⁵⁶, Kevin Luckas²⁸, Valery Lyubovitskij^{50,51,52,54}, David Mack⁴⁹, Michael McCaughan⁴⁹, Mark Manley³⁰, Hrachya Marukyan¹, Vladimir Matveev²⁶, Mihai Mocanu⁶³, Viktor Mokeev⁴⁹, Curtis Meyer⁹, Bryan McKinnon¹⁸, Frank Nerling^{15,16}, Matthew Nicol⁶³, Gabriel Niculescu²⁷, Alexander Ostrovidov¹⁴, Zisis Papandreou⁵³, KiJun Park⁴⁹, Eugene Pasyuk⁴⁹, Peter Pauli¹⁸, Lubomir Pentchev⁴⁹, William Phelps¹⁰, John Price⁷, Jörg Reinhold¹³, James Ritman (Spokesperson)^{28,68}, Dimitri Romanov²⁶, Carlos Salgado⁴⁰, Todd Satogata⁴⁹, Susan Schadmand²⁸, Amy Schertz⁵⁶, Axel Schmidt¹⁹, Daniel Sober¹¹, Alexander Somov⁴⁹, Sergei Somov35, Justin Stevens (Spokesperson)56, Igor Strakovsky (Spokesperson)19, Victor Tarasov²⁶, Simon Taylor⁴⁹, Annika Thiel⁵, Guido Maria Urciuoli²⁴, Holly Szumila-Vance19, Daniel Watts63, Lawrence Weinstein43, Timothy Whitlatch49, Nilanga Wickramaarachchi⁴³, Bogdan Wojtsekhowski⁴⁹, Nicholas Zachariou⁶³, Jonathan Zarling⁵³, Jixie Zhang⁶¹

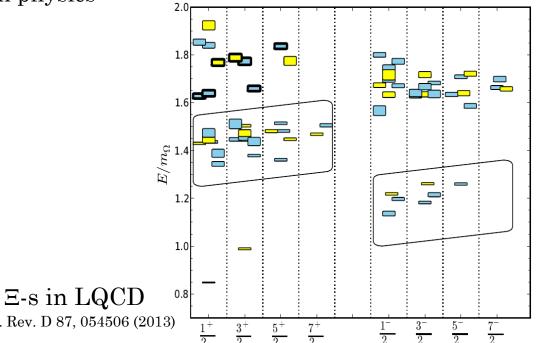
Theoretical Support:

Alexey Anisovich^{5,44}, Alexei Bazavov³⁸, Rene Bellwied²¹, Veronique Bernard⁴², Gilberto Colangelo³, Aleš Cieplý⁴⁶, Michael Döring¹⁹, Ali Eskanderian¹⁹, Jose Goity^{20,49}, Helmut Haberzett119, Mirza Hadžimehmedović55, Robert Jaffe36, Boris Kopeliovich54, Heinrich Leutwyler³, Maxim Mai¹⁹, Terry Mart⁶⁵, Maxim Matveev⁴⁴, Ulf-G. Meißner^{5,29}, Colin Morningstar⁹, Bachir Moussallam⁴², Kanzo Nakayama⁵⁸, Wolfgang Ochs³⁷, Youngseok Oh31, Rifat Omerovic55, Hedim Osmanovic55, Eulogio Oset62, Antimo Palano64, Jose Peláez³⁴, Alessandro Pilloni^{66,67}, Maxim Polyakov⁴⁸, David Richards⁴⁹, Arkaitz Rodas^{49,56} Dan-Olof Riska¹², Jacobo Ruiz de Elvira³, Hui-Young Ryu⁴⁵, Elena Santopinto²³, Andrey Sarantsev^{5,44}, Jugoslav Stahov⁵⁵, Alfred Švarc⁴⁷, Adam Szczepaniak^{22,49}, Ronald Workman¹⁹, Bing-Song Zou⁴

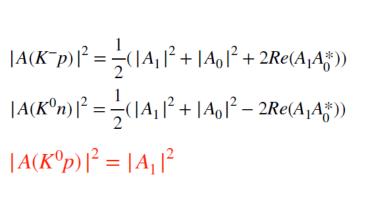

Collaboration Map

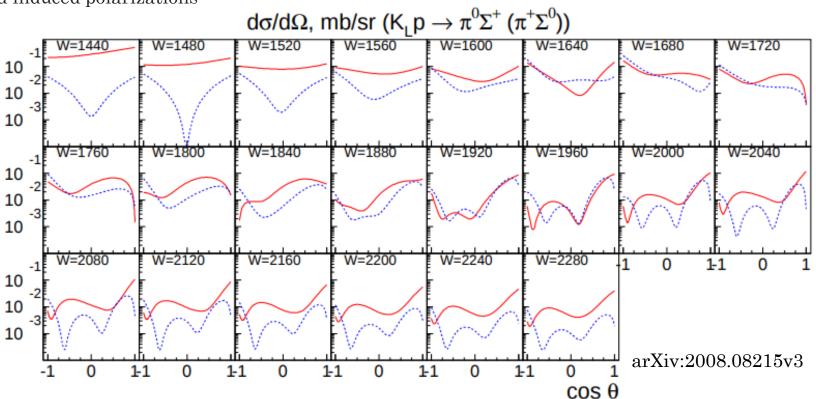


Strange Baryons


- > CQM and LQCD expect more hyperon states than experimentally observed.
 - Mismatch in the number of states is significantly worse for hyperons than for N* sector.
- Study of the properties of the states with strange quarks gives insight into the underlying dynamics and into the relevant degrees of freedom.
- > Important input to high-density/temperature hadron physics

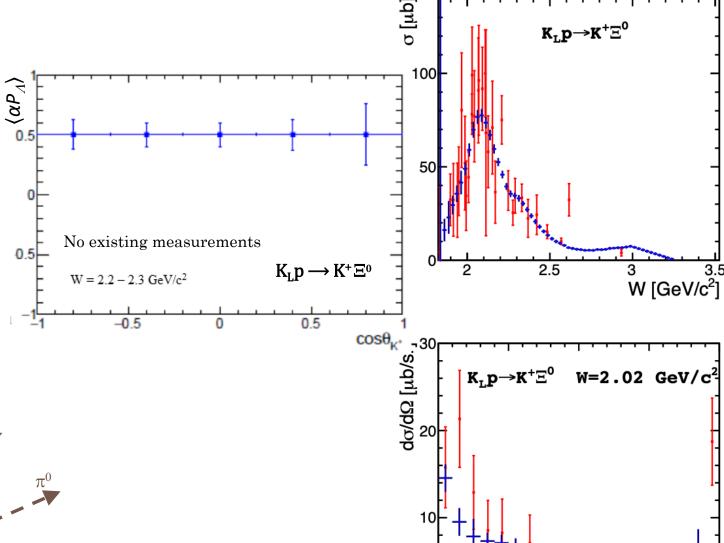
Jefferson Lab




[PDG 3* & 4* states]

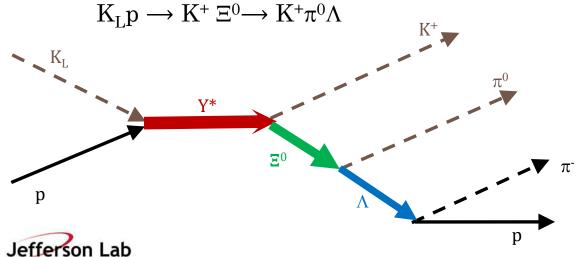
$\pi\Sigma$ and $\pi\Lambda$ Channels

- \triangleright Using $\pi\Sigma$ and $\pi\Lambda$ channels, we can access excited Σ^* and Λ^* state.
- Reactions using (K_L & p) in the initial state has different isospin contributions in the amplitudes from when using (K_L & n) or (K-& p) in the initial state.
- > Perform global PWA analysis to settle the spectrum of excited state hyperons.
 - We can measure cross sections and induced polarizations



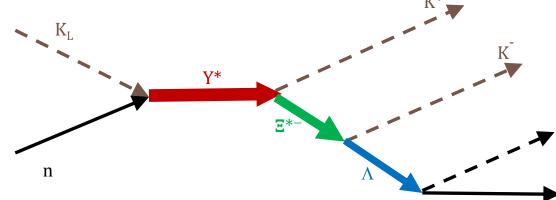
K Ξ Channel

- > Can access hyperon states that do not directly couple to $\pi\Lambda$ or $\pi\Sigma$ channels.
- > Measure differential cross section and induced polarization using measured angular distribution of decay products.
 - Constrains underlying dynamics.
- > To identify resonance contributions, we must perform a coupled-channeled PWA to extract spin-parity and pole positions of excited hyperons.
- > Similarly impressive expectations are for the neutron target.

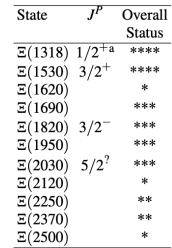


-0.5

arXiv:2008.08215v3


0.5

cosθ^{c.m}

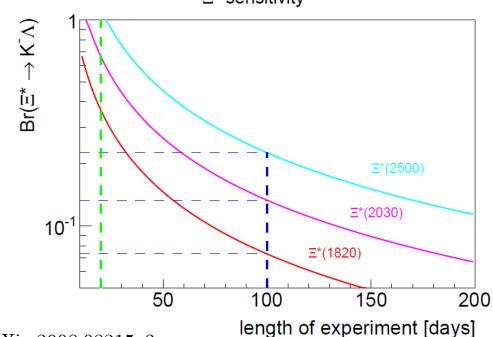

Excited Cascades \(\Xi^*\)

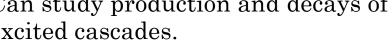
$$K_L n \longrightarrow Y^* \longrightarrow K^+ \Xi^{*-} \longrightarrow K^+ K^- \Lambda$$

> Can study production and decays of excited cascades.

- Quantum numbers for some of the
- > We can measure branching ratios for

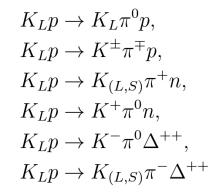
 $\Xi^* \to \Lambda K$

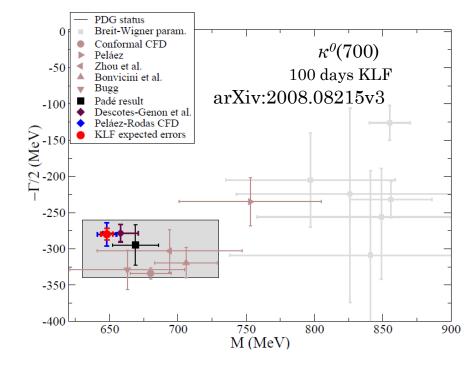

 $\Xi^* \to \Xi \pi$

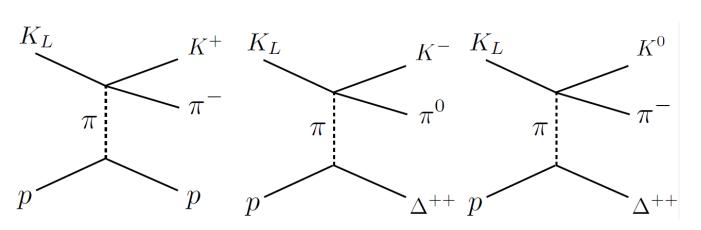

 $\Xi^* \to \Xi \eta$

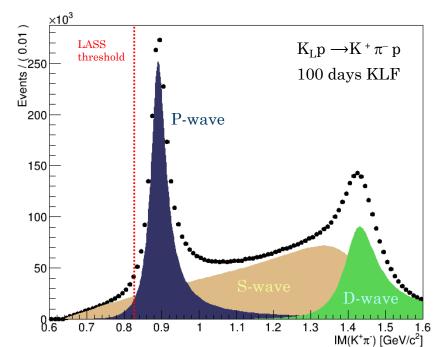
 $\Xi^* \to \Xi \omega$

 $\Xi^* \to \Sigma K$

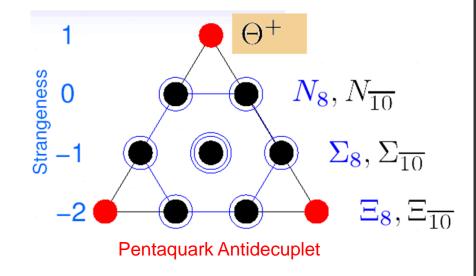


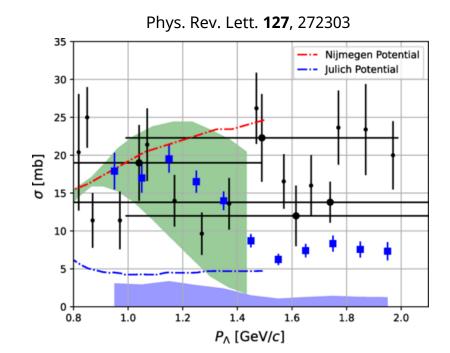



- Most of our knowledge of cascade spectrum comes from beam experiments in the 60s-80s.
- excited cascades are not determined.
- $K^-\Lambda$ decays of Ξ^* down to $\sim 4\%$.


$K\pi$ Spectroscopy

- > The simplest hadronic reaction that involves s-quark
 - crucial for understanding non-pQCD.
- > Locate pole positions in I=1/2 & I=3/2 channels
 - Existence of the scalar $\kappa^0(700)$ (I=1/2, S-wave 0⁺⁺) is still unclear.
 - Need data at invariant masses closer to ~650 MeV to reconcile ChPT models, data, and LQCD.
 - Separating isospin contributions will require K_L detection.

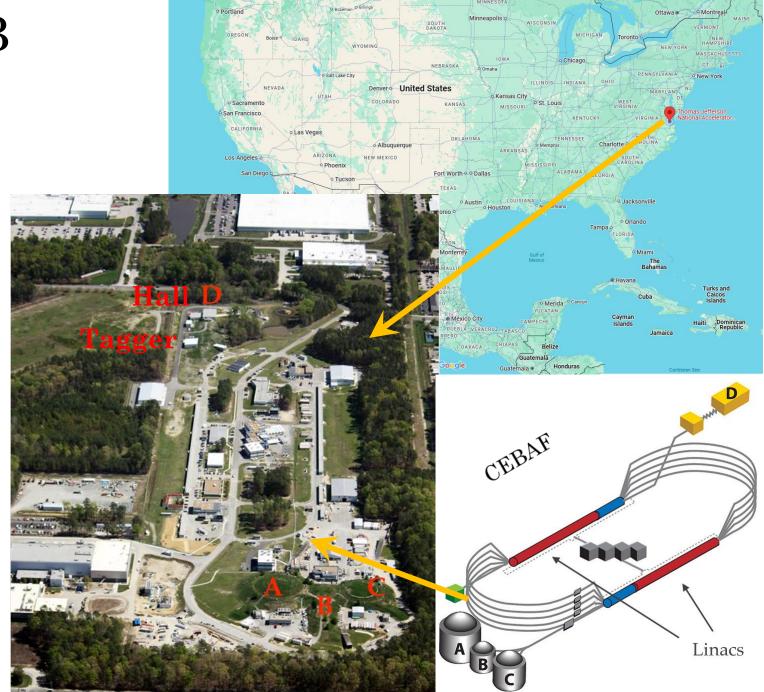




Other topics

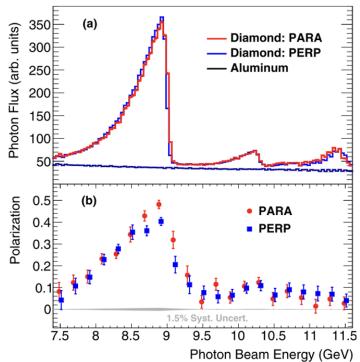
S=1/2

- > Study of Ω^* (S=-3) states.
- > Neutron induced reactions.
- $> K_L p \rightarrow K^+ n$ reaction to study non-resonant background to hyperon production
 - Resonant structure would mean an exotic state.
- > Hyperon-nucleon scattering.
 - Important for neutron star equation of state
- > "Parasitic" experimental setups to study hypernuclei.

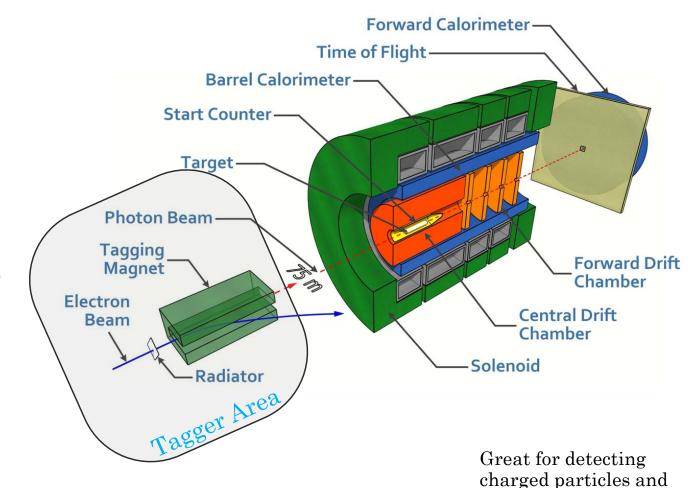


CEBAF @ JLAB

- > Up to 12 GeV polarized continuous electron beam
 - ~1.5 GHz beam time structure
- > Four experimental Halls: A, B, C, D
 - Each halls receives an electron beam bunch every ~4ns
- Experimental program concentrates predominantly on hadronic physics.
 - Hall D:
 - Meson spectroscopy
 - J/Ψ near-threshold photoproduction
 - Rare meson decays
 - Pion polarizabilities
 - Color transparency and shortrange correlations in nuclei.



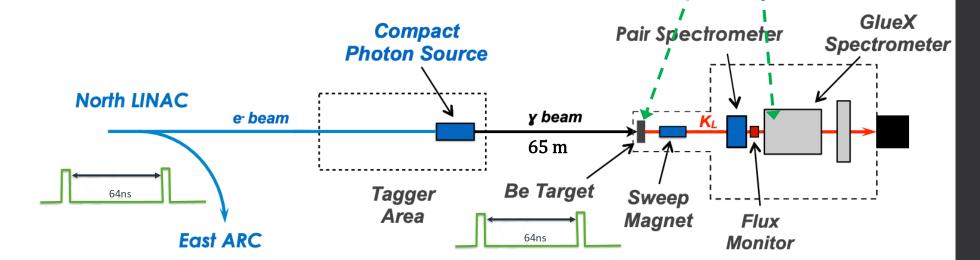
photons in the final


states.

GlueX in Hall D

- 12 GeV electrons with 4ns beam bunch separation
- Linearly polarized photon beam produced via coherent bremsstrahlung of electrons on a thin (5x10⁻⁴ X0) diamond radiator.
- Photons are tagged by detecting the electrons in a scintillating detectors (photon tagger).

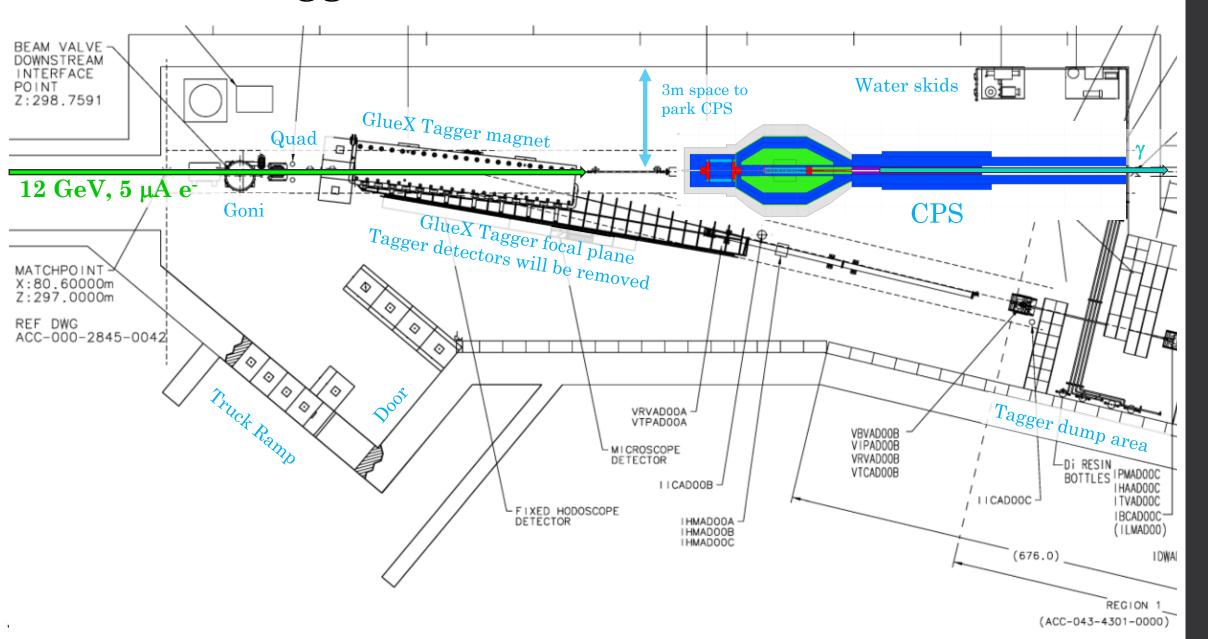
Jefferson Lab


- \triangleright Acceptance: $\theta_{lab} \approx 1^{\circ} 120^{\circ}$
- > Charged particles: $\sigma_p/p \approx 1\%-3\%$ ■ PID using TOF \oplus dÉ/dx \oplus DIRC
- > Photons: $\sigma_E/E = 6\% / E \oplus 2\%$

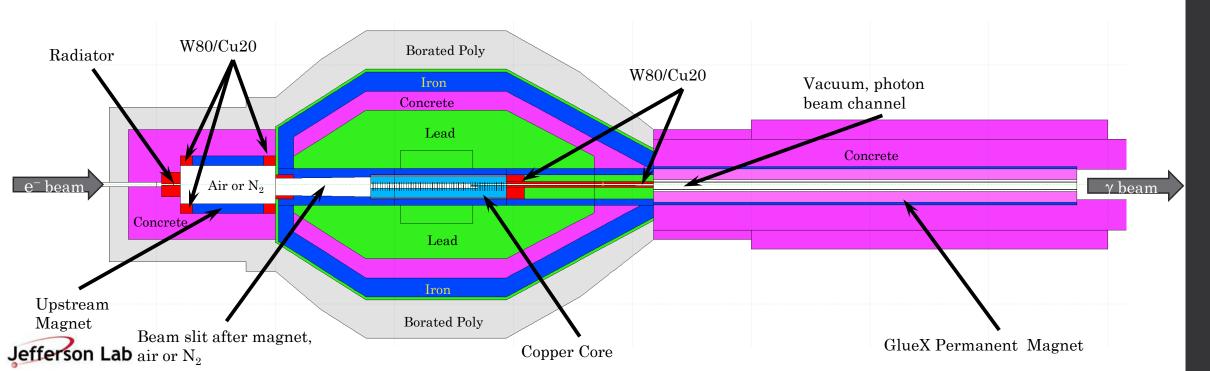
KLF in Hall D

- ➤ Use the electron beam delivered to Hall D to produced a high intensity untagged photon beam on ~2% X0 amorphous radiator in the tagger building of Hall D.
- > Use a Beryllium target in Hall D collimator cave to produce tertiary beam and absorbed the rest of the beam.
- ▶ Use K_L in-flight decays to measure kaon flux in the beamline.
- > Tertiary K_L-beam impacts a liquid hydrogen target to produce the final states of interest.
 - LH2 target will need some modifications.
- > To determine the momentum of the beam that caused the event in GlueX, KLF will use 64-ns beam structure to allow the low energy kaons to travel the 24m distance between the kaon production point and the hydrogen target.
- \triangleright Estimated conversion time from γ -beam to K_L -beam is ~18 months.

Tertiary beam:


$$e^- \longrightarrow \gamma \longrightarrow K_L$$

24 m


CPS in Tagger Hall

Compact Photon Source

- > CPS creates intense photon beam for KLF and absorbs the primary electron beam in a cooled copper core.
- > Radiator in the upstream section of CPS followed by a horizontally bending magnet.
- > Permanent magnet at the exit of CPS to clean up charged particles.
- > CPS can be pushed aside for photon beamline restoration.

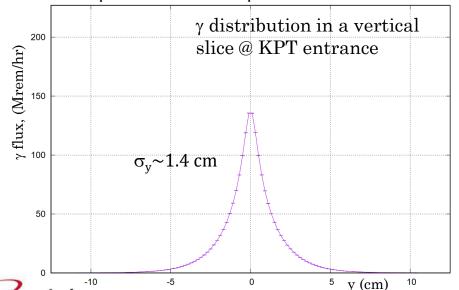
- > CPS shielding is designed to provide radiation environment in the tagger hall with dose rates comparable to nominal GlueX photoproduction experiments.
 - Detail simulations have been done using FLUKA software package to estimate dose rates and power deposition.
- > Total estimated weight of CPS is approximately 75 metric tons.
- > Estimated cost of the current design is ~\$1.2M for CPS.

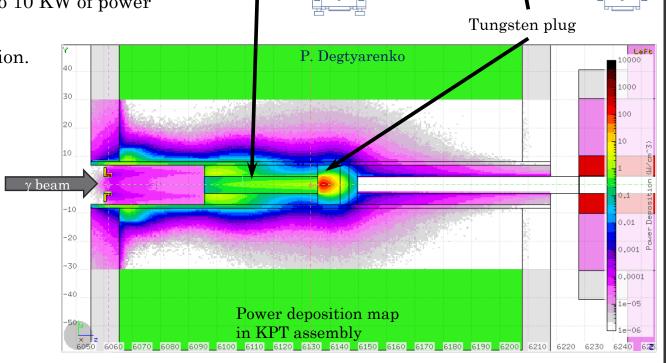
Kaon Production Target

 \gt Based on our studies, a 40cm long and 6cm wide Beryllium rod would be the optimal choice for producing K_L beam.

➤ A tungsten plug to stop other particles is expected to be ~14cm.

 Photons and charged particles are absorbed in a tungsten plug placed after the beryllium target.


• Significant amount of K_L survive the tungsten plug and the path to the hydrogen target.


> Two magnets after KPT to sweep charged particles out of the beamline.

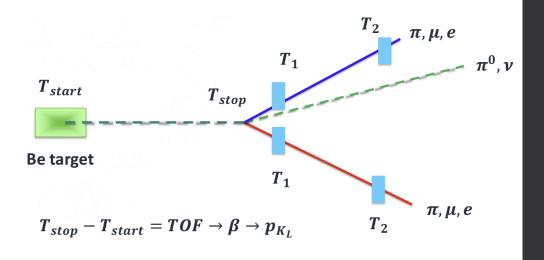
Be-target and W-plug are heavily shielded to prevent excessive radiation levels.

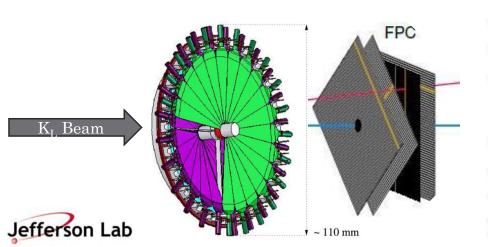
➤ KPT assembly is designed to absorb and dissipate up to 10 KW of power delivered by the photon beam.

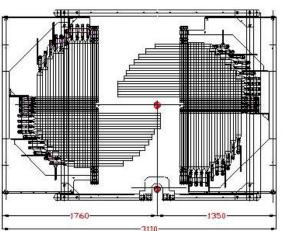
KPT can be pushed aside for photon beamline restoration.

KPT

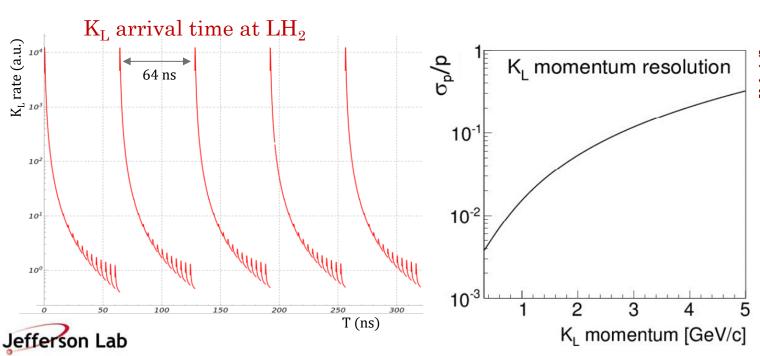
Ø 60 – [2.4]

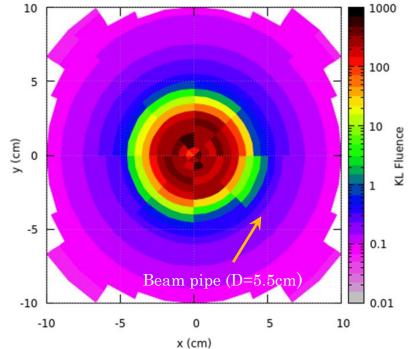

Be target

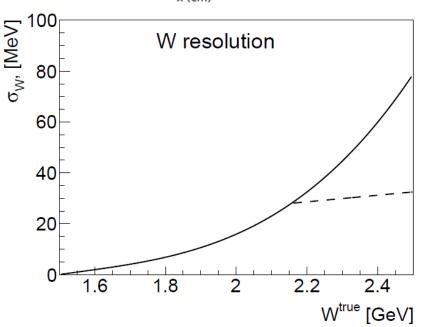

Assembly


Kaon Flux Monitor

- We can use K_L in-flight decays to measure the KL flux versus momentum and versus transverse position w.r.t beam axis.
 - K_L momentum determined using TOF between KPT and the decay vertex.
- > Install Kaon Flux Monitor (KLF) in the location of GlueX Pair Spectrometer.
- > We plan to use three separate packages of scintillator detectors, and a tracking system based on straw tubes.
 - All are excess equipment from WASA available free to KLF.

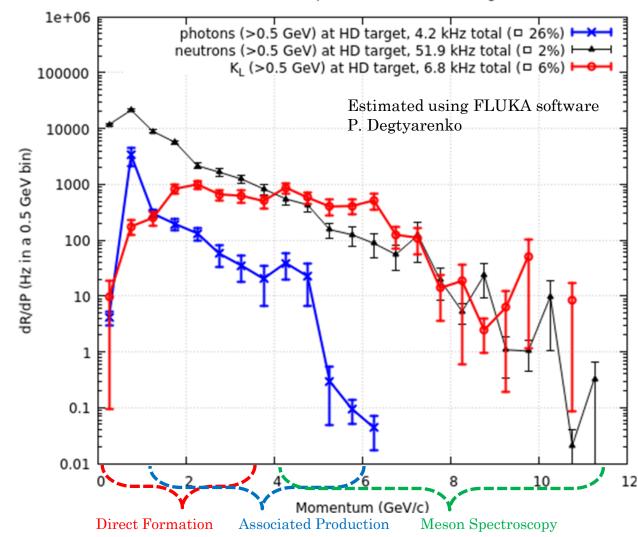




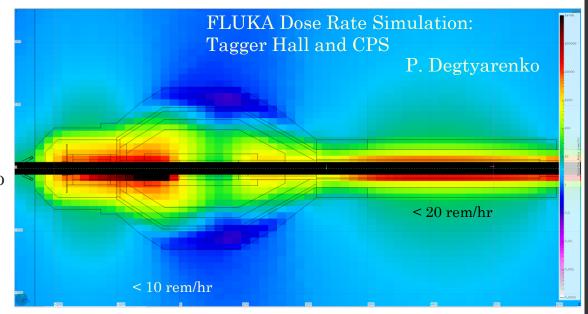

K_L Beam

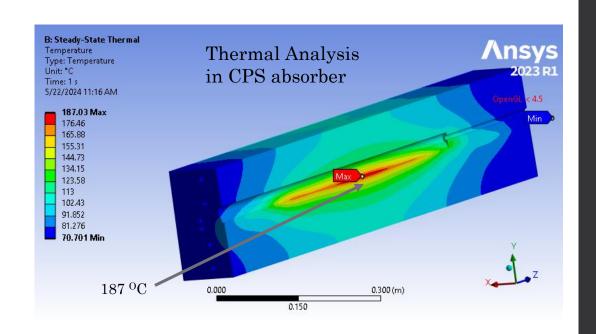
- > Kaon beam is mostly constrained to the beam pipe due to the collimation.
- > Kaons are created every 64ns KLF electron beam bunching.
 - Small ~2% bleed-through bunches is expected.
- > K_L momentum determined using TOF between KPT and LH₂.
 - Above W>2.1 GeV/c², K_L momentum determined using e detected final state.
- > We expect neutron background in the beam which should be rejected in the event reconstruction.




K_L fluence at the LH₂ target, P. Degtyarenko

Beam Particle Spectra


- > KLF beam at LH₂ target is expected to contain a mix of different kind of particles.
- > At low momenta, most of the particles in the beam pipe will be neutrons.
- > At high momenta, above 5 GeV/c, we expect mostly K_L -s in the beam line.
 - We expect approximately ~10 KHz
 K_L per second on the LH₂ target.
- > There is also significant number of muons that originate in the KPT assembly, but they are not constrained to the beam pipe.



Challenges

- > Maintaining radiation environment safe for people and equipment.
 - We perform detailed simulations with FLUKA package to estimate the radiation levels at various beam conditions and adjust our design accordingly.
- > Prevent excessive temperatures in CPS that could result in deformation of the photon beam exit channel.
 - Closely monitor beam positions, temperatures in CPS to shut down beam if needed.
- > Maintain detector counting rates comparable to those during GlueX-II running.
 - We perform detailed GEANT4 simulations with KLF and GlueX conditions to adjust KLF design parameters.
 - We are considering building a new Start Counter around the target to match the 6cm KLF target diameter.
- Separating out-of-time beam buckets from Hall D laser and bleed-through from other Halls.
 - Simulate various final states with out-of-time beam bunches and physics background channels to evaluate the impact.
 - Initial indication that these should not be a significant problem for K⁺n final state.

Status and Timeline

- > Conceptual designs of CPS and KPT nearing completion.
 - Some procurements have already started.
- > Kaon Flux Monitors detectors physically exist.
 - Need to be shipped from Germany to Jefferson Lab for testing and installations.
- > LH₂ target requires relatively small modifications
 - Will be constructed by Jefferson Lab target group.
- > We are aiming for beginning of KLF installations in the summer of 2026.
 - The experiment would start in the winter of 2028 in this scenario.

- Assumes 25 weeks of CEBAF running in FY25 and 30 weeks afterwards.
- Approved GlueX-III run is not shown

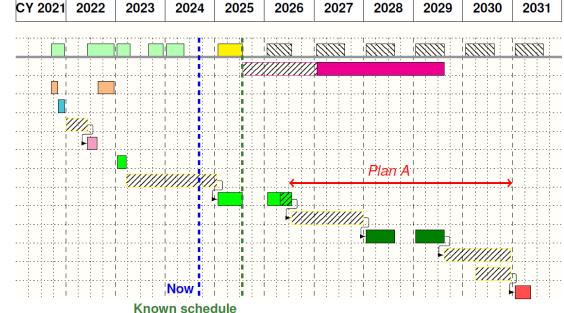
- > There are many uncertainties related to the schedule.
 - Funding levels for JLAB
 - Compatibility with MOLLER experiment in Hall A.
 - Available manpower to design and install the new equipment.

Assumed beam availability Hall A MOLLER E12-10-011 PrimeX-η Run E12-19-003 SRC/CT Run Installation of CPP

E12-13-008 CPP/NPP Run

E12-12-002 GlueX-II

Installation of FCAL2


E12-12-002A GlueX-II+JEF Run

Installation of KLF

E12-19-001 KLF Run

Restoration of photon beam Installation of REGGE

E12-20-011 REGGE Run

Conclusions and Outlook

- > K-Long Facility will be the first hadronic beam experiment at Jefferson Lab.
 - Approved for running for 200 days.
- > Data from KLF is expected to make major impact in strangeness physics:
 - identify excited hyperons with masses up to 2.5 GeV/c² in formation and production reactions,
 - have a significant impact on our knowledge on $K\pi$ scattering amplitudes,
 - improve determination of K*'s parameters, including those for $\kappa^0(700)$.
- > Significant progress has been made in the design of KLF equipment.
 - Some technical challenges are being addressed.
- > KLF may start running as early as winter of 2028
 - Subject to funding availability and potential scheduling incompatibilities with other experiments.
- ➤ New collaborators are welcome !!!
 - This is a good time to join KLF.

