

K_L Flux Monitor

Mikhail Bashkanov

KLF FM Readiness questions

• What is the status of the conceptual design of the Flux Monitor (KFM)?

KLF FM Readiness questions

What is the status of the conceptual design of the Flux Monitor (KFM)?
 Conceptual design is ready

K_L decays

	Br, %
$K_l \to \pi^{\pm} e^{\mp} \nu_e$	40.55
$K_l \to \pi^{\pm} \mu^{\mp} \nu_{\mu}$	27.04
$K_l \to \pi^+ \pi^- \pi^0$	12.54
$K_l \to \pi^0 \ \pi^0 \ \pi^0$	19.52

- ~ 21% of kaons decays in flight
- Any decay with charged particles can be used

K_l flux monitor location

Flux monitor location

KLF FM Readiness questions

If more than one option is considered please discuss each of them
4 options (A-D) were considered

KL FM options

Option A

Bespoke new ToF system Bespoke new Trackers Bespoke new Magnet Great performance
Expensive(~1M GBP equipment)
Requires a lot of man power

Used Wasa ToF system **Used Wasa Trackers Used MRI Magnet**

⊕Great performance ⊕ Affordable (~150k GBP equipment) ⊗ Still ~100k for MRI/magnet related expenses

Used Wasa ToF system **Used Wasa Trackers Used MRI Magnet**

⊕Great performance ⊕ Affordable (~150k GBP equipment) ⊗ Still ~100k for MRI/magnet related expenses

Option C

Used Wasa ToF system Used Wasa Trackers **NO** Magnet ⊕Good performance
⊕ Cheap (~50k GBP mainly relocation)
⊗ Limited capabilities in rare kaon decay studies

Used Wasa ToF system **NO** Trackers **NO** Magnet Tolerable beam momentum resolution performance

- ⊕ Very Cheap (~7k GBP mainly relocation)
- Solution Limited capabilities
- ⊗ No beam shape reconstruction

KL FM options: C-B

Used Wasa ToF system **Used Wasa Trackers** Used MRI Magnet?

⊕Great performance ⊕ Affordable (~150k GBP equipment) ⊗ Still ~100k for MRI/magnet related expenses

Option B-C

Engineering design: *Timothy Whitlatch*

Status

- Asked for 2 STFC UK grants
 - Outcome will be known by the end of summer this year(financial details by Oct 23)
 - Quite confident (with possible exception of MRI)
- Wasa ToF
 - Co-PI Bashkanov, owner Uni Tuebingen(Germany) now in Juelich
 - Agreed on use (both Juelich and Tuebingen)
- Wasa tracker
 - owner Uni Uppsala(Sweden) now in Juelich
 - Agreed on use (both Juelich and Uppsala)
- All components can be relocated from Oct 2023

Requirements "C"

- "Feet" places for standard profiles
- Place to locate crates and tracker gas station
- Place for the MRI will be reserved, and it can be installed there at any moment

KLF FM Readiness questions

- What is the status of the conceptual design of the Flux Monitor (KFM)?
 - Conceptual design is ready
- If more than one option is considered please discuss each of them
- 4 options were considered.
- A "balanced" option "C" was chosen as a solution.
- Possible extension to option "B" (adding a MRI) is possible, provided requested funding will be granted

KLF FM Decommissioning?

- KLF FM has very low irradiation (~1k particles/s)
 - No contamination/activation
- No irreversible changes
 - KLF FM components needs to be removed (<1 month)
 - Pair spectrometer needs to be reinstalled back (<1 month)
 - Pair spectrometer magnet stayed untouched

Conclusion

Possible magnet

Siemens Magnetom 1.5T used MRI

Table 4: Magnet specification

Parameter	Siemens
RF frequency MHz	63.6
Shielding	Passive and active
Homogeneity (VRMS) 40 cm DSV ppm	0.2 (typically)
Field stability ppm/hr	< 0.1
Number of measurement planes	24
Number of measurement points	20
Cooling system	Liquid helium only
Boil-off rate l/hr	0
Helium refill	10 years maximum (approximately)

Table 7: Installation details

Overall scanner dimensions	Siemens
Mass: magnet only tonnes	3.55 ± 8(including helium)
Mass: assembly tonnes	5.5
Depth with covers (z) cm	160
Width with covers (x) cm	230
Height with covers (y) cm	230

~70kEuro+delivery

• ~ 110 mm

Wasa detectors

_

-10**1**

Wasa detectors

Used in TOF mode for the isospin violating $dd \rightarrow {}^{4}He\pi^{0}$ experiment

(b) Forward Proportional Chamber FPC

Status

- FWC (TOF start) and FVH (TOF stop)
 - Agreed on use
 - Available from Q42023
- Tracker
 - Agreed on use (Uppsala, TJ)
 - Available from Q42023

*K*₁time resolution due to position in Be **Be Target** ---- $--K_{I}$ \sim - - - - - - - - - K_L $\Delta t = \frac{L}{c\beta_{K_I}} - \frac{L}{c} = \frac{L}{c} \left(\frac{1}{\beta_{K_I}} - 1\right)$

For L=40cm and $p_{K_l} > 800 MeV/c$, $\Delta t < 150 ps$

*K*_ltime resolution due to position in Re δt vs p

"No tracker" K_ltime resolution

Status

- 3 options for the Flux monitor
 - Price
 - Performance
 - Byproduct research (rare decays)
 - Background suppression