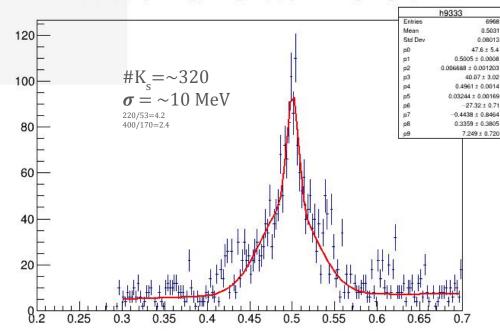
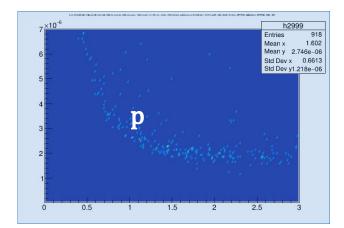

Reconstruction of $K_s+...$ and K_s+p final states from simulated $K_L+p \rightarrow K_s+p$ using *positive* and *negative* tracks and dE/dx from CDC.

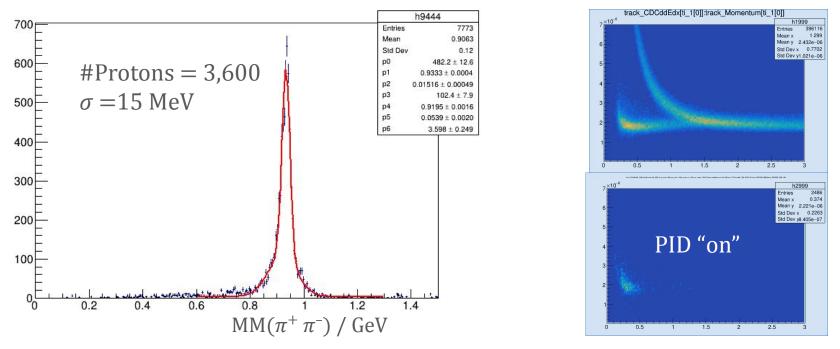

Reconstruction $K_L + p \rightarrow K_s(\pi^+\pi^-) + p$... at K_L momentum (0.3,0.6) GeV/c. The histogram includes Effective Mass of all x^+x^- pair in each event.



- Reconst. Eff. of K_s via pairs of *positive* & *negative* tracks, and CDC dE/dx : $\varepsilon = 4.9$ K/10.8K = **45%**.
- Combinatorial background is twice higher. Interesting to compare with $\underline{12C(\gamma, K0)}$.

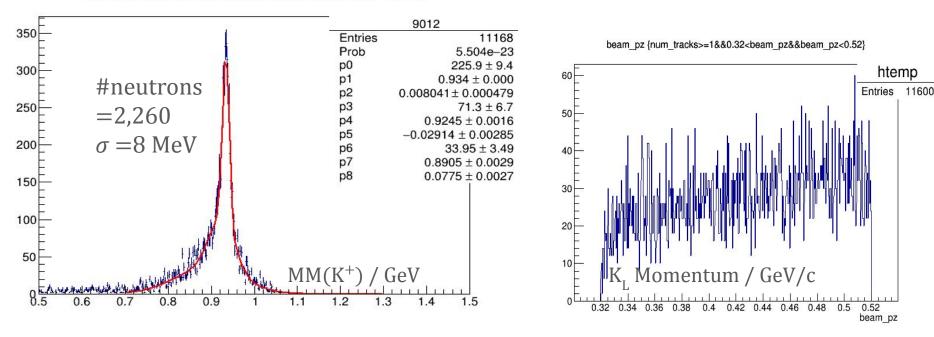
Reconstruction $K_L + p \rightarrow K_s(\pi^+\pi^-) + p$... at K_L momentum (0.3,0.6) GeV/c. The histogram includes Effective Mass of all x^+x^- pair in each event.

(EM(Pi+Pi-))&&((num_proto>=0&&num_piplu>=1&&num_pimin>=1)&&(num_racks>=1&&0.3
deam_pz&&beam_pz<0.6))



• Rec. Eff. of **K** via pairs of positive & negative tracks, and inverse CDC dE/dx : $\varepsilon = 0.32$ K/10.8K = **3%**.

Reconstruction $K_L + p \rightarrow K_s(x^+x^-) + p$ at K_L momentum (0.3,0.6) GeV/c. The histogram includes Effective Mass of all x^+x^- pair in each event.


Common Cut: num_proto>=0 & num_piplu>=1 & num_pimin>=1 & num_tracks>=1 & 0.3
beam_pz<0.6)
Track ID Cut: track_CDChitused[ti_1[0]]>=4 & 1.25>track_VBTPID[ti_2[0]] & track_VBTPID[ti_1[0]]<1.25

• Reconst. Eff. of $K_{e} + p$ via pairs of positive & negative tracks, and CDC dE/dx : $\varepsilon > 3.6$ K/10.8K = 33% !

Reconstruction Eff. of $K_L + p \rightarrow K^+ + n$ at K_L momentum (.32, 0.52) GeV/c. The histogram includes Missing Masses of all K^+ .

(track_KaPIMiss at)&&(num_tracks>=1&&0.32<beam_pz&&beam_pz<0.52)

- Gaussian-1 $S_1 = p0[1/ch] * \sqrt{2\pi p2[GeV]} [ch/GeV] = 226 * 2.5 * 0.008 * 500 = 2260$
- Gaussian-2 $S_2 = p3[1/ch]*\sqrt{2\pi}p5[GeV]*[ch/GeV] = 71*2.5*0.029*500=2660$
- In 5q region Reconstruction Efficiency $= 2260/11600 = \sim 20\%$ ($\sim 40\%$ with two Gaussians).

Photo-production of neutral kaons on 12C in the threshold region T. Watanabe , P. Byd^{*}zovsk[′]y, K. Dobashi *et. al.*

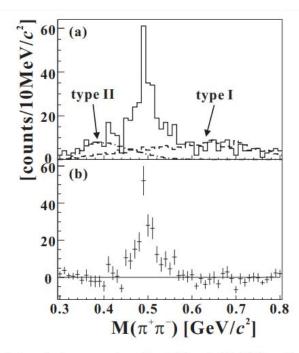


Fig. 4. Invariant mass spectra without (a) and with (b) the estimated background subtraction. In (a), solid, dashed and dot-dashed lines are raw, type(I) background and type(II) background, respectively. The data is of $1.05 < E_{\gamma} < 1.10$ and $0.9 < \cos \theta_{K0} < 1.0$.

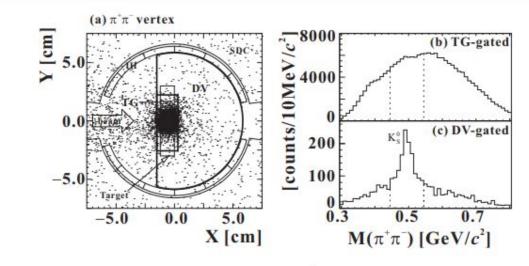
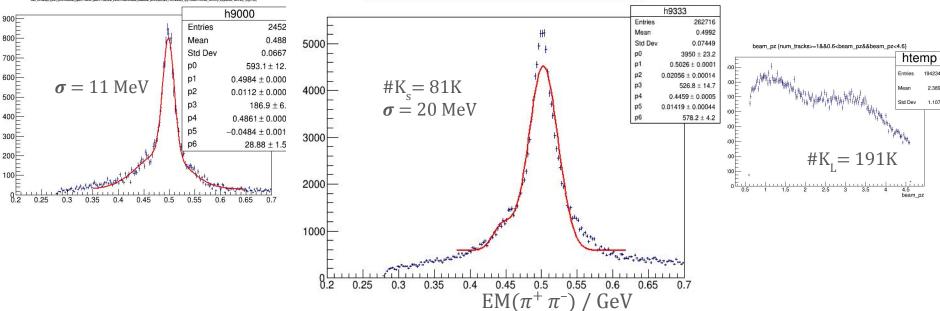



Fig. 2. (a) A vertex distribution of $\pi^+\pi^-$ events. The figure are a top view of the target area. Beam comes from left to right (X-axis). The Y-axis means horizontal direction perpendicular to the beam. Events come mainly from the target region denoted by TG. (b) An invariant mass spectrum of $\pi^+\pi^-$ events gated that the vertex is in the target region (TG-gated). (c) An invariant mass spectrum of $\pi^+\pi^-$ events gated that the vertex is outside the target denoted by DV. The peak around M = 493 MeV is identified as K_S^0 .

Reconstruction $K_{L}+p \rightarrow K_{s}(x^{+}x^{-})+ \dots$ at K_{L} momentum (0.6,4.6) GeV/c.

The histogram includes Effective Mass of all x^+x^- pair in each event.

 $(EM(Pi+Pi-))\&\&(num_protos=0\&\&num_piplus=1\&\&num_pimins=1)\&\&(num_trackss=1\&\&0.6 < beam_pz\&\&beam_pz<4.6))$

• Reconstruction efficiency of K_s via pairs of positive and negative tracks and CDC dE/dx is $\varepsilon = 81$ K/191K = 42%.

Common Cut: (num_proto>=0&&num_piplu>=1&&num_pimin>=1)&&(num_tracks>=1&&0.3
beam_pz&&beam_pz<0.6) Track ID Cut: track_CDChitused[ti_1[0]]>=04&&1.25>track_VBTPID[ti_2[0]]&&track_VBTPID[ti_1[0]]<1.25

Conclusive remarks

- Reconstruction efficiency of K_s And K_s +p is sufficiently high.
- It may be affected by neutron induced reactions.
- We need to simulate all background reactions.
- How to use beam TOF