THE GEORGE WASHINGTON UNIVERSITY WASHINGTON, DC

$K_L + p \rightarrow \pi^+ + \Lambda$

MARSHALL B. C. SCOTT

HTTPS://WWW.LINKEDIN.COM/IN/MARSHALL-SCOTT-PH-D-17AB191B9

KL4 RXN AND GENERATING STEPS

- KI4 : K⁰_L+ p $\rightarrow \pi^+$ + A $-\Lambda \rightarrow$ p + π^- (63.9%) ; Current priority $-\Lambda \rightarrow$ n + π^0 (35.8%)
- Backgrounds : (Primary) $K^0_L + p \rightarrow \pi^+ + \Sigma^0$, (Secondary) $K^0_L + p \rightarrow K^+ + \Xi^0$
- Generated histograms/root files (Monitoring Histograms, ReactionFilter, mcthrown_tree)
 - hd_root --nthreads=8 -PPLUGINS=PEVENTRFBUNCH:USE_TAG=KLong PVERTEX:USEWEIGHTEDAVERAGE=1 -PPLUGINS=monitoring_hists foo_smeared.hddm
 - hd_root --nthreads=8 -PPLUGINS=PEVENTRFBUNCH:USE_TAG=KLong -PVERTEX:USEWEIGHTEDAVERAGE=1 -PPLUGINS=ReactionFilter –PReaction1=10_14__8_18 foo_smeared.hddm
 - hd_root --nthreads=8 -PPLUGINS=PEVENTRFBUNCH:USE_TAG=KLong -PVERTEX:USEWEIGHTEDAVERAGE=1 -PPLUGINS=mcthrown_tree foo_smeared.hddm

WORKING ON POLARIZATION EXTRACTION

- The Λ is polarized and its polarization can be induced from the angle the decay proton in the Λ center of mass makes with the beam-Λ normal.
- The normal for this analysis is defined as :
 n = K_L X Λ
- $\alpha P = 3 < \hat{p}_{\wedge cm} \cdot \hat{n} > = 3 < \cos \theta_{pn} >$ - Decay parameter $\alpha = 0.732$, older data has it at 0.642.

3

ERROR IN LAST KLF PRESENTATION

- The plots on the right show the cosθ_{pn} distributions.
- The plots show a large distortion that the reconstruction causes in the cosine distributions.
- It was suggested that I should double check my angle definitions, and it turns out that in the Thrown Tree distributions I did **not** boost the proton to the Λ center of mass frame.
- The bottom plot shows the distribution with the correct definition, which is identically zero.

M. B. C. Scott

CURRENT HYPOTHESIS

- The components of the dot product are equal in magnitude and opposite in sign.
- K_L = (E, 0, 0, p_z), so rearranging the terms in the cosine
 Cos(θ_{pn}) = p_{z,K}(p_{x,Λ}p_{cm,y,p}- p_{y,Λ}p_{cm,x,p}); so the term in parentheses is zero.
- Plot on the bottom shows that the distributions of the two terms and the distributions are equal in magnitude and opposite in sign.

THE GEORGE

INIVERSIT

WASHINGTON, DC

BEAM MOMENTUM ISSUES

- From the plots below, it shows that the Thrown Tree Beam p_z oscillates after 3.2 GeV.
- This is not found in the Rec. and the Thr. Distributions.

THE GEORGE WASHINGTON UNIVERSITY WASHINGTON, DC

Backup Slides

DATA HAS AN ASYMMETRY

- The Rec., Thrown Tree, and efficiencies for $p_{x,\Lambda}p_{cm,y,p}$ and $p_{y,\Lambda}p_{cm,x,p}$ are shown to the right.
- The Rec. distributions are have an asymmetry

THROWN TREE DISTRIBUTIONS

Plots to the right show the thrown tree proton momentum in the lambda center of mass frame, the beam momenta, and the lambda momenta.

3.5 4 4. K.p [GeV]

REC. VS. THROWN TREE : PROTON MOMENTA

.

مدويلي

-0.2 -0.1 0 0.1 0.2 0. Proton p GeV

,****^{*}*********

ThT. Proton p

₿8000

Geooo

14000

12000

10000

8000

6000

4000

2000

g 0.09

g 0.08

0.07

0.06

0.05

0.04

0.03

0.02

0.01

8.3

-0.3

Efficiency : Proton p

Acm.x

M. B. C. Scott

THROWN TREE LAMBDA DISTRIBUTIONS

 To the right are plots of the thrown tree and recon. lambda momenta distributions.

.l

THE GEORGE WASHINGTON UNIVERSITY WASHINGTON, DC

Deeper Backup Slides

M. B. C. Scott

WASHINGTON, DC

WASHINGTON, DC

M. B. C. Scott

20

21

FULL RESULTS

- The plots to the let show the mea aP using the BNL, HERMES, and extracting the aP from the cosine distribution.
- The plots with ad without the t cut are shown.
- Here the $n = K_L X \Lambda$.

