SIMULATION Σ (1670)⁺ $\rightarrow \Lambda \pi^+$ KLF collaboration meeting - Spring 2020

02/12/2020 | Kevin Luckas | Institut für Kernphysik

Member of the Helmholtz Association

Motivation

- Final Goal: Analysis of radiative decays of excited hyperons
- Start with $\Sigma(1670)^+ \rightarrow \Lambda \pi^+$ to familiarise with KLF software

Outline

- Event Generator
- Particle Identifiaction
- Reconstruction
- Individual Particle Efficiency
- Summary

Event Generator

- Reaction $K^0_L p \rightarrow \Sigma (1670)^+ \rightarrow \Lambda \pi^+ \rightarrow \pi^- \pi^+ p$
- Custom generator for phasespace distributions
- Momentum distribution of K⁰_L
- Breit-Wigner resonance for $\overline{\Sigma}(1670)^+$
 - $(M = 1670 \,\mathrm{MeV}, \Gamma = 60 \,\mathrm{MeV})$

Particle Identification

Assign Particle Id based on probability from dE/dX and timing info

PID criterion

- Determine the probability for all hypotheses
- Keep all PIDs where rel. probability is above 40 %

Reconstruction of the Λ ($M = 1115 \,\text{MeV}$)

- \blacksquare Combine all π^- and p
- Apply a mass cut with total width 14 MeV
- A signal can clearly be selected

Missing Mass

- Need to distinguish Kaon and γ beam \Rightarrow Missing Mass
- Combine Λ with π^+ , determine MM²($Xp \rightarrow \Lambda \pi^+$)
- Cut with total width of 0.064 GeV² centered around squared Kaon mass

COMBINATORICS

Target Volume

- Determine POCA between π^- and p: o_{Λ}
- Determine POCA between π^+ and $o_A : o_{\Sigma}$
- Cut on the z-Coordinate of o_{Σ}^{z}

Combinations from different PIDs

- Allowed different PIDs for a single particle
- $\,$ Cut combinations by chosing event, where o_{Σ} closest to beam axis

With these cuts a single combination is chosen

Overal efficiency

- Reconstructed and generated beam energy are in good agreement
- Overall reconstruction efficiency of approximately 6 %

Next step

 Study individual particle eff. to determine source of losses

Slide 7

EFFICIENCIES

Efficiency determined from "confusion matrix"

Optimal case: Only Diagonal filled

Issues in the π^- - Identification

- Significantly smaller efficiency than the other charged particles
- Misidentification, approx. 7 % assigned as π^+

 Low efficiency at low momenta consistent with other studies [1]

 Misidentification might come from spiralling tracks

[1] https://halldweb.jlab.org/DocDB/0038/003801/003/aschertz_piplustracking_oct2018.pdf

Summary

- Custom generator for $K^0_L p \rightarrow \Sigma(1670)^+ \rightarrow \Lambda \pi^+ \rightarrow \pi^- \pi^+ p$
- Final state reconstruction
- Overall reconstruction efficiency of 6 %
- Losses due to low pion momentum (?)

PARTICLE IDENTIFICATION

Definition of Probability $= \sqrt{\frac{dE}{dE}} \text{ and } \sigma \text{ use pred}$

- - and TOF time distributions

PID criterion

- Determine the probability for all hypothesis
- Keep all PIDs where rel. probability is above 40 %

π^+ - EFFICIENCY

